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Abstract

Fractal correlation dimensions C and discrete-
pseudo-phase-plots are presented for four percussion
instruments to show basic kinds of persussion
instrument behaviour. The xylophone and the
churchbell - a small and a large instrument - are two
western examples, which are shaped in a way to have
- among inharmonicity - at least some harmonic
partials. The tibetian zimbel and the javanese gong
gede - again a small and a large one - are non-western
instruments with just inharmonic overtone structures.
The initian of the small instruments have C = 3.5
(xylophone) and C ≈ 6 (zimbel) within the first 25ms
respectively 50ms. Then the inharmonicity dies out
and it is C = 1 in both cases.The second integration
time of the ear, which is about 50ms, makes it
impossible for listeners not to perceive these initians
as a whole, because of the shortness of the initian. So
a real initian like in non-percussion instruments is
present here. The large instruments on the other side
keep their values throughout the first 400ms. The gong
gede is the only instrument examined (which includes
also non-percussion instruments in former studies),
which can be struck in a way, that no chaoticity
appears. The try of western music to have a harmonic
structure in partials, which is not present e.g. in
indonesian music is interpreted in terms of the different
world views of these cultures.

Keywords: Percussion instruments, fractal correlation
dimensions, discrete-pseudo-phase-plots.

INTRODUCTION

Initial transients of musical instruments are in many
cases cruicial for identification of the instrument class
[Reuter 1995,1 Grey 1977,2 Grey & Moorer 1977,3

Wessel 1979,4 Krumhansl 1989,5 Iverson & Krumhansl
1993,6 Mc Adams et al.1995].7 In Multidimensional
Scaling Technique (MDS) the similarity judgements of
subjects are related to the physical parameters of the
sound. It comes out, that three dimensions are enough
to explain about 80 % of all judgements. The most

common dimension is the spectral centroid Z, which is
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So after transformation of the time series by FFT -
or by Wavelet-Transform - the weighted frequencies,
renormaliezed by the amplitudes is what is also referred
to as brightness. The more higher frequencies with greater
amplitudes exist, the brighter is the sound. It is widely
agreed, that this is the best identification procedure for
instrument sounds during the so called steady-state
[Kostek 2001].

8
 This steady-state is reached after about

50ms in general. But this range can vay a lot [Luce &
Clark 1965].

9
 So a piano sound has a transient phase,

which lasts for about 2ms in a middle pitch region,
while an flute organ pipe can take about 300ms to
finally reach the steady state.

But this steady state is also not totally steady. It is
also referred to as a quasi-steady-state. This is because
instruments like the violin or the saxophone keep
producing the tone after the initian by steady bowing
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or blowing. So during continuing the sound, there are
wide possibilities of controlling it like canges in
loudness, or brightness (the centroid) or through
vibrato. In MDS experiments this feature comes out
to be the second dimension. The instruments where
the player is able to continue the sound, have during
the continuation in a middle pitch region very good
identification possilibities, e.g. the violin can be
identified due to the bowing noise which is produced
by steady glueing and releasing of the bow on the
string. The release break causes a short impulse, which
is the cause of the noise [Güth 1995].

10
 The lip- and

reed-driven instruments are said to have a formant
region, a frequency band, in which the harmonic
overtones have always higher amplitudes independent
from the played pitch. The reason is a constant closing
time of the reed or lip during the vibration over all
playable notes of the instrument This causes a
frequency band to act as formant, which can be seen
by Wavelet-Transforms. But also these instruments are
sometines hard to identify. The saxophone is very hard
to distinguish from a clarinet in high regions. The
fundamentals in the overtone structure get higher than
the formats of the instrument. Also the initian is so
short, that it can no longer serve as identification.

The third dimension in the MDS is the initial
transient. It was referred to as inharmonicity.
Investigations concerning the ‘chaoticity’ of sounds,
namely the fractal correlation dimension and an
information structure [Bader 2001 a, b]

11, 12
 showed

that violins have the most complex initian with
dimensions up do D=8. The reed-instruments like the
clarinet and the saxophone are in a middle region -
together with the classical guitar - and have dimensions
around D=3. In was shown, that the value of the
dimension is related to the overall rules, governing
the sound. A harmonic overtone spectrum is D=1. Each
inharmonic component above a certain amplitude
threshold increases the correlation dimension by one.
Also strong amplitude changes are taken as an own
rule and again increase the dimension by one.

But the pitch and the musical expression of the
player change the dimension from sound to sound.
There is not a single dimension value for each
instrument. This is caused by the fact that music is
lively and rich and instruments are built, which have a
hughe amount of degrees of freedom. The violin shows
an independence of the dimension in regard of pitch, but
a variety of possibilities with loudness and attack (hard
or soft attack). The guitar on the other side is not so
much dependent on loudness, but on pitch, because the
lower strings are much more stiff and are not able to
vibrate in very complex fashion. Although the clarinet
is able to increase the sound continuesly after the initian
and so avoids a hard attack, the low initian itself has
never just a dimension of D=1, like the steady-state
thereafter. But the pianissimo beginning makes the
tone sound very smooth even with such an initian.

Now the initian of percussion instruments is caused
by the most simplest driving mechanism: an impulse.
This impulse has the strcture of a gauss distribution
with a drift to smaller time values. [Borg 1983].

13
 If

the impulse would be a dirac delta impulse, it would
have an continous spectrum (or white noise musically
speaking). The impulse is not a perfect dirac delta,
but serves here in the same way by driving all possible
eigenvalues of the vibrating system nearly with the
same energy. These eigenvalues or eigenfrequencies
of the intrument normally need no more than at least
one sinusodial period to be stable and so there is no
initian as with the other instruments, which are mostly
coupled vibration systems. But nevertheless do
percussion instruments have an initial transient. This
is because most of the driven modes are damped very
fast. They appear just within the first 50ms or so and
die out imeadietly. So they do not reach the time border
of 50ms (second integration time of the ear) beyond
which a clear pitch is percieved. They sometimes not
even reach the first integration ear time of 5ms, which
is at least needed to built up the critical bands in the
coclea. So subjectivly for the listener, there is an
initian, which is a ‘conscious unit’, that means, it can
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not be divided into smaller subpieces in means of
perception or even analysed by the listener.

But there are also findings, that the initian
sometimes is more complex. First, instruments struck
by soft mallets can be damped by that mallet, which is
not moved away from the surface of the instrument
after struck quickly enough. This can be the case with
large gongs, like the javanese gamelan gong gede,
which is a about 80cm in diameter [Schneider 1998].

14

The backdriving of the gongs surface after the struck
back against the mallet is relatively slow, but as the
gong is played in a more meditativly way, the mallet
is also moved not too fast. The mallet dampes the
initian a bit, which is then expressed in the time series
by an short amplitude breakdown after the initian.
Then the sound continues with normal amplitude.

When interpreting the initian by fractal correlation
dimension and discrete pseudo-phase-plots, each
frequency component has an own dimensional value.
This is, because most percussion instruments do not
have an harmonic, but an inharmonic overtone
structure. The vibration is one of bending modes, not
of transverse vibration. Bending, which
mathematically speaking is caused by the fouth
derivation of the space variable compared to transverse
vibration (of a string, air column etc.), which is the
second derivation of the space variable is like the
relationship of dependence of the curvature of
curvature to just the curvature (because curvature is
the second derivation in space).
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In 2b, the partial differential equation of the
bending, x and y are the space coordinates, t is time, E
is Youngs modulus, ρ is density and K is the radius of

gyration. In 2a, the equation of the string vibration, c
is the speed of the soundwave. As 2a has as solution a
harmonic overtone structure, 2b when applyed e.g. to
a rod has an inharmonic overtone structure
independent from boundary conditions. These
boundary conditions chance the eigenvalues, but they
never come to be harmonic.

In western tonal music there is nearly always an
harmonic overtone structure wanted. From a
standpoint of the instrument builder this is much harder
to achiev. The strings has to be streched with much
tension, a drum skin has to be very thin but must stand
strong pressures, when streched. The only easy
example is an air column. And this also is the only
way to get loud sounds without the use of a resonance
body, which again acts with bending modes. So a
harmonic overtone structure is much harder to achieve,
because one has to overcome the gyration of mater.

The only western percussion instrument, which has
a nearly harmonic overtone structure is the xylophone.
This palisander stick has a cutoff so that the second
eigenvalue of the stick is the double octave of the fun-
damental. [Borg 1983,

13
 reviewed in Fletcher &

Rossing 1999].
15

 Also round percussion instruments,
like some drums or cymbals have not only inharmonic
relations, but also some harmonic ones, because of
the the combination modes of ring- and radialmodes.

The used xylophone beam made of Palisol, which is a
substitute for the rare wood Palisander.

Rolf Bader
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METHODS

Fractal Correlation Dimension

Correlation dimensions are well known in fractal
geometry and used to calculate a fractal dimension
from a time series. The other fractal dimension
calculations like the information dimension or the box-
counting dimension are normally only used with two-
dimensional fields, in which several points (i.e.
measurement values) are plotted. There is no timelike
relation between the plotted points, what matters is
just the spatial distribution. These dimensions could
be applied to more than two-dimensional fields, but
the calculations are very complicated then (especially
with the information dimension).

The dimensional-problem does not occur with the
correlation dimension. High dimensions can be created
easily. We have to keep in mind, that a 2-dimensional
field as mentioned above may be i.e. a surface structure
of a material and it would make no sense to transform it
into a higher dimensional field. Time series on the other
hand are originally just one-dimensional. So any higher
dimensionality with time series is always artificial. But
it is a way to describe the time series content in a more
abstract way. To see this, we have to look first at the
formalism of higher dimensional embedding.

The time series is embedded in a d-dimensional
space which is done by forming vectors of length d.
Their components are the values of the discrete time
series of the sound, staring from time point t and taking
the values t + n  * δ, (n = 0, 1, 2, 3 .. d-1). δ is called
delay variable and in this paper δ = 4 is always used
with correlation dimensions. δ = 4 is the minimum
value which causes correct results. Greater values can
be used, but no smaller ones [Keefe & Laden 1991].

16

So taking δ = 4 and i.e. d = 5, the fist vector would consist
of the amplitudes taken at time points (1, 5, 9, 13, 17).
The second vector would be the amplitudes of the time
points (2, 5, 10, 14, 18) etc. So in the end for a time
series of N points, we have N - δ * d vectors (the last δ
vectors cannot be formed, because the time series ends).

The reason for this embedding is, that complex
time series are made simple (but with the disadvantage
of high dimensionality). Would we take a sinusodial
time series, in a two dimensional space, a circle would
arise. If we add another sinusodial component, in the
same two-dimensional space there would be seen a
kind of Lissajous figure. But if the take a three di-
mensional embedding, this figure dissolves into two
circles. For more complex time series higher
embeddings are used. In theory, for a final fractal
correlation dimension d, (2 * d ) + 1 embedding
dimensions have to bee used. In practise this is true
for time series, which are very long and do not change
through time. For transients, which are analysed in
this paper with short and changing time series, much
higher embedding dimensions are necessary. In short
a harmonic overtone structure will result in a fractal
correlation dimension of C = 1, no matter how many
harmonic components there are. If just one inharmonic
component is added, C rises by one. As an example,
in Table I there are correlation values for a balinese
xylophone with a loud inharmonic overtone structure.

etalP C naitini C s1retfa

1 8.6 5.2

2 4.4 5.2

3 5.5 0.2

4 6.3 5.1

5 5.6 2.1

6 0.5 3.1

7 5.6 5.2

8 5.3 0.3

9 5.6 0.3

01 2.6 5.3

Tabla I. Correlation dimensions of a balinese Gender dasa
plates 1 (lowest) - 10 for the transient and at t = 1s after the
initian. The value of the dimension is the amout of
inharmonic overtones within the spectrum over a certain
threshold. As the tone of this bronze xylophone is hearable
even a minute after the struck, most of the eigenvalues of
the plates are gone short after initian. These fast damped
frequencies can be said to be the initial transient of the
gender. The time intervall of calculation is both times 50ms.
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Now out of the N-d * δ vectors a matrix is built,
which represent the distances of each of the vectors
from all others. Then the vectors-distances have to be
counted, which are larger than a threshold r,
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and normalized by, as can be seen in (3).  The
Heavyside function is 1 for the distance of a vector
beeing geater than r and otherwise it is 0. The slope of
the plot Log C(r) vs. Log r is the correlation dimension.
The Log / Log - plot is the usual calculation method
for fractal geometry, which seem to be a phaenomenon
often found in nature [West 2001].

17

Discrete pseudo-phase-plot

The second method used here is a visual
representation, the discrete pseudo-phase-plot. It is
based on the calculations of the d - dimensional
embedding discussed with the correlation dimension.
But here we have only d = 2, because the output should
be a two-dimensional graphical representation. Now
all the vectors created through the embedding are
plotted into a two dimensional grid with a certain box

size. All points falling into one box are counted, so
this is also a kind of box-counting method known from
fractal geometry. So each box has a certain value and
therefore certain plot methods can be used to show
the results (3D plot, density plot, contour-plot etc).
Here a contour plot is used for a 3D plot would have
to have a viewing angle and therefore the plot may
not be represented in a good overall view.

The right box size is cruicial for good results. For
a very wide box would have too many points in it, so
there would be no good differentiation. On the other
hand, boxes that are too narrow may count just a few
points (or even just one). This representation would
be the same as plotting just the points in a two-dimen-
sional array, which can be helpfull sometimes with
time series, which are quite regular. The transient time
series used here are more complex and it was found,
that the discrete pseudo-phase-plots are a very good
graphical representation for them.

Wavelet transform

Also Wavelet-Transforms are used here. This
method is an excellent tool for small time series as
transients, as one can zoom into the sound as needed.
Also the relation of frequency vs. time accurancy, the
problem of the uncertainty principle, can be choosen
freely. Here a complex Morlet Wavelet is used [Haase
et al. 2002]

18
 in the discrete form, because the input is

the discrete sampled sound time series:
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Here, the Discrete Wavelet-Transform DWf

depends on the frequency ω and the place in the time
series (the physical time) for which the transform is
done. f is the discrete time function and N is the ac-
tual number of time points, which are summerized.
ω

0
 is comparable with the time window in classical

FFT. A larger value of  ω
0 

will separate nearby
frequencies, a smaller value will show the detailed
amplitude structure and frequency shifts.

The used balinese bronze xylophone Gender dasa, which
means Gender with ten plates. The frame is usually with
wood-carving. This one was bought by the auther directly
from a manifacturer in the town of Sawang, Bali and is a
single instrument not used in an orchestra before, a typical
practicing instrument used by musicians at home.

Rolf Bader
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RESULTS

To show the difference between western and non-
western percussion instruments in their physical structure
and in their sounds, four instruments have been analysed.
With the two western instruments there is a small one -
the western xylophone - and a large one - a churchbell.
This idea was also used with the non - western
instruments, a small one - the tibetian zimbel - and a
large one - the javanese Gong “Gong Gede”.

It is shown, that both western instruments are
prepared in a way to have a harmonic overtone
structure, while the two non-western instruments are
not tuned like this. The reason for the - in western
eyes - untuned manner of the zimbel and the Gong
Gede can not be found in any carless construction.
For the Gong Gede is found to be not exactly round,
causing a vibrating sound, which represents the quality
of the Gong. And the zimbel is made with beautiful
handcraft and formed very precise in shape.

Tibetian zimbel

First we examined a tibetian zimbel, which is usually
used in religios context. It is a small handbell and is 9cm
in diameter and 7cm in hight without the stick. [For an
overview of the vibration of handbells see Rossing
2001].

19

Figure 1 shows the time evolution of the discrete-
speudo-phase-plott for the first 400ms from initian. It
shows up, that the initian itself has a correlation
dimension which is about C ≈ 6 but very unstable, so
the sound ist really chaotic. This can clearly be seen
with the Wavelet - Transform (Figure  2).

The used handbell, normally used in religious ceremonies,
e.g. in tibet.

Fig. 1. Discrete pseudo-phase-plots of a zimbel. Time step:
50ms, last plot up to 400ms. Here C is just approximable
for the first 50ms. There are too many frequencies. At least
it is about C » 6 but there is too mach ‘chaoticity’ in the
initian. But the second 50ms have a clear dimension of
C=1.8, which decreases with time up to C=1.0 for a
sinusodial. The sound of a zimbel also lasts for about a
minute to die out, but here the higher harmonics are just
present within the first 50ms over a certain threshold.

Fig. 2. Wavelet -Transform of the zimbel sound in the first
400ms.

Fractal correlation dimensions and discrete-pseudo-phase-plots of percussion instruments in relation to cultural world view
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The initian has broad bands of frequencies instead
of discrete values. This would be very unusual for non-
percussion instruments. But after this initian, the
values decrease to between 1 < D < 2, so there is just
one strong harmonic partial left. The other partial in
figure 2, that can be seen is much lower in amplitude.
In higher regions over 10 kHz there are partial dying
out very quickly. Also a constant amplitude oscillation
can be observed in all partials. This is always the case
in any kind of instruments. It may be caused by an
interchange of energy between the modes.

Western xylophone

Next a xylophone beam was examined theoretically
and experimentally. For the theoretical values a
method of Borg [Borg 1983]

13
 was used. It takes the

Rung-Kutta method to evaluate the eigenvalues. As
the differential equation is fourth order, two Rung-
Kutta algorithms are combined. The xylophone has a
cutoff (Fig. 3) for tuning the second and third partials
to the double octave and the fifth over the third octave
(or the middle of the major and minor third over the
third octave, which listeners found as the most
interesting sound color). The first cutoff tunes the
second partial, the second cutoff tunes the third partial.
Now this cutoffs cause the radius of gyration to change
throughout the beam. This changing can be modelled
by the Runge-Kutta method, because this method

partitions the beam. Each partition is given his own
radius of gyration. For calculation of the correct
eigenvalue, a certain value is estimated. This first
extimation is not correct, but we increase or decrease
this value as long as we found the right one. Now, the
Runge-Kutta is calculated twice for one eigenvalue
which different boundary conditions. The two
curvatures of the beam w can be expressed as a linear
combination of the two single versions with two
constants C:

)()()( 2211 xwcxwcxw +=
Now the two curvatures are for the boundarys in x

= 0 as w
1
(0) = 1 and w

2
(0) = 0. Only when the chosen

eigenfrequency is correct, this is also fullfilled with
the momenta - second derivation - and the force - third
derivation - (which is not the restoring force). The
results when reaching the end of the beam can be
written in two equations, which only when both are
satisfied, if the eigenvalue of.
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is correct. Then the determinant of the two equations
becomes zero. The algorithm was implemented with
the assumption of the first curvature being a sinusodial
curve from phase ϕ = 0 to ϕ = π/2. When powered by
values p < 1, the curvature becomes more flat. As there
is no rule for the curvature, different values of p were
used. A pure sine curve seems to fit best.

But in all cases, there was one mode missing
compared to the measured results (Table II). The
frequencies f1, f2, f5 and f6 of the theoretical
calculations fit satisfying to the measured f1, f2, f6
and f7, but f3 and f4 (theoretical) face f3, f4 and f5

Fig. 3. Shape of the xylophone-beam of length 31 cm with
two cutoffs, the large first cutoff and the small second cutoff
in the middle. The length from top to the beginn of the cutoff
is 8,2 cm, the curvature of the cutoff 3,0 cm, the way to the
second cuttoff in the middle is 3,7 cm, the second cuttoff is
1,2 cm. The curvature is sin (x)p.

Rolf Bader
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(experimental) with no clear connection. There seems
to be a combination mode along and perpendicular to
the beam length, which causes a new eigenvalue. In
theory, the beam was assumed just as beam, not as
plate which has combined modes.

The phase-space in figure 4 shows the time
evolution of the xylophone. The fractal correlation
dimension is C=2.5 in the first 25ms. Then it decreases
to 1 < C < 2. The low value for the initian is explained
due to three partials beeing in harmonic relations as
mentioned above. A harmonic overtone structure has
the Dimension C=1, so here at least 1 more overtone
is present in the sound. The second reason here is that
the beam was struck as soft as possible. But even then
a dimension of C=1 for the initian can not be reached.

Churchbell

After the results for small instruments, here the
xylophone and the handbell zimbel, two large vibrating
systems, a churchbell and a gamelan gong gede are
examined.

The churchbell sounds for a long time. Figure 5
shows the phase-plot evolution. There seems to be no
fundamental change through time, which is also
expressed in the correlation dimension value of C≈3.5
throughout the 400ms. A churchbell also has a kind
of tuned overtone structure with octaves and normally

Fig. 4. Discrete pseudo-phase-plots of a palisander Orff-
xylophon. Time step50ms. Like in the case of the zimbel,
the first 25ms have C=2.5, which is not so much, because
the strike was as smooth as possible. But even then there
are at least 4 overtones above the threshold, because the
xylophon has three harmonic partials, which would rise to a
dimension of D=1. But the higher partials die out quickly for
only the time interval 25ms < t < 50ms has a dimension of
C=1.5. This can clearly be seen by the nearly perfect circle
in the second picture of this figure. Also the overall amplitude
of the sound decrease quickly. Because of a high sampling
frequency of 96kHz, it was possible to calculate a dimension
within only 25ms istead of the usual limit of 50ms.

Fig. 5. Discrete pseudo-phase-plots of a church-bell. Time
step: 50ms, last plot up to 400ms. The fractal dimension of
C = 3.5 does not change during the sound. Church bells
continue their sound long after initian. Because of the finite
number of points in a sampled sound interval, it hardly
possible to calculate fractal correlation dimensions for time
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tkO1+tnec1,42zH0,55012f
tkO3+tnec9,324zH1,85623f
tkO4+tnec0,203zH6,45944f
tkO4+tnec1,177zH8,69465f
tkO5+tnec2,62-zH1,89186f

tkO5+tnec0,373zH3,423017f

)1=p(laciteroehT
zH1,3621f

tkO2+tnec5,3-zH4,05012f
tkO3+tnec5,165zH3,21923f

tkO4+tnec4,8553zH2,41854f
tkO5+tnec7,92-zH1,97285f

tkO5+tnec1,314-zH2,886016f

)7.=p(laciteroehT
zH9,1621f

tkO2+tnec9,72-zH9,03012f
tkO3+tnec0,2705zH2,80823f
tkO4+tnec7,5153zH4,44654f
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tkO4+tnec3,444zH9,86354f

tkO5+tnec5,43-zH1,34185f
tkO5+tnec2,0414-zH2,217016f

Tabla II. Measured and calculated eigenvalues of a Orff-
Xylophone beam of length 31 cm. It can be seen, that for all
curvatures p = 1, p = .7 and p = .4, there is one mode missing
compared to the measured values. This may be caused by
a mixed mode of longitudinal and transversal bending. All
of the values exept for the fundamental frequency exist just
within the first 40 ms after the struck.
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a minor third [minor-third bell see Rossing 2001].
19

So this value of 3.5 means at least two strong additional
overtones added to the harmonic structure. As a
characterization of a churchbell it is said, that the initial
struck is bright and first the prime tone is heared as a
fundamental. But after a while the so called hum tone,
which is an octave beneath the fundamental is accepted
as the fundamental, because the higher modes died out.
But this lasts more then 400ms. So here it can be seen,
that compared to the smaller instruments, the compexity
of a church bell stays on, as expected. The initial burst
of inharmonic high components in a Wavelet-Transform
is was found, that this special sound actually do not have
an initial struck, the partials are just starting, which itself
is heard as a struck. But the sound itself is percieved still
as a normal church bell sound.

Javenese gong «Gong gede»

The last example is that of a javanese gong gede
with a diameter of d ≈ 80cm. It is the only instrument
we observed which has a correlation dimension value
for the initian  C < 2, which means there are no large
inharmonic overtones or any other chaotic behaviour.
figure 6 shows the time evolution in phase-space. The
pictures show a clear circle which is getting larger
and smaller. This is due to the so called ‘ombak’. The

diameters of the gong are not exact equal. So for each
diameter there are different mode frequencies, which
vary only a bit. The result is an amplitude oscillation,
a beat, which is a quality criterion for that gong. But
of course this does not change the dimension. It could
only do so, if a very large time window would be  used
for calculation. The listener hears a very low sound
with the ombak and without a certain initian just due
to the fact, that the sound starts.

But in musicology not only the pure sounds have to
be analysed. There is also a need of an interpretation in
terms of what music means to people. Although a detailed
discussion is beyond the scope of this paper, just a few
ideas should be presented here. The hermeneutical
interpretation of music is derived out of analogies
between the structure found in the musical syntax or
sound and the structures underlying non-musical terms.
[For an analogy between the world view of cultures and
the music they use see e.g. Bar-Yosef 2001].

20

In terms of musical syntax a very widely known
concept is that of tention and relaxation, of kinetic and
static energy in the musical flow [Kurth 1931].

21
 A

possible analogy in terms of an inharmonic overtone
structure is the missing fusion of sounds. [A review of
fusion as used by the phenomenology and gestalt-
psychology especially by Stumpf see Schneider 1997].

22

Fusion means, that in the case of a hamonic structure,
the listener is not able to perceive the singel sinusodial
components out of the sound. Fusion is a hole of indivi-
dual components. But these components do not loose
their individuality through fusion. Rather without these
individualities, fusion would not exist. Inharmonic
overtones are not fused. Every component is heard as a
single one.

The inharmonic structure can be refered to the
hindu religios concept of many diversive parts existing
next to each other, but without a need of a common
rule, for a hindu does percieve god as the nature of all
things in all things [which may be compared with
Heideggers „Ding an sich“, which means existence

Fig. 6. Discrete pseudo-phase-plotts of a Gamelan Gong
Gede. Time step: 50ms, last plot 400ms. The Gong has a
strong fundamental frequency and so is one of the few
examples, of a correlation dimension of C = 1.3 throughout
the initian (a sine tone would have a circle in the phase plot,
which is also the case here). The beakdown of amplitude
towards picture 7 of this series and again an increase in
picture 8 shows the so called ‘ombak’ of this Gong.
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per se].
23

 Just the pure existence is the common rule,
not a special individual property. The Western thinking
in contrast is hieracically. There is a search of common
rules building up the structure, which are found in a
common fraction of the sinusodial frequency values.
The connection between the harmonic / inharmonic
overtone structure and the world view is argued to be
through the consious space being the same in both
cases. If we hear an inharmonic sound, the conscious
space, in which we are in that moment, is one of
diversive things existing next to each other without a
common denominator.

The same thing happens, if we imagine - or have
to deal with - different diversive cultures, which
are all at once in our consious field. The subjects
are different - here overtones, there cultures - but
in abstraction, it is the same experience we make.
This can also be refered to by the fact, that all sen-
sual information adapted by different senses all end
to be activation potentals in the nervous brain
system. This may be the cause of many spacious
words - derived from vision - in terms of music
(high / low pitches etc.). The cultural diversity is
more abstract than that, but it may be the same
phaenomenon on a higher level.

Of course we have to be carefull in this field,
because analogies work in some places but can fail
in other example. Hindu religion also have a
hierarchy of gods and know hierarcical structures.
But they also have the world view mentioned above
and this can be refered to with the problem of
inharmonic spectra. So like in statistical empirical
work, just tendencies can be found. In the case of
Bali, where I did some field work, the analogy is
quite obvious and the hindu concept of accepting
foreign ways of thinking is a major part of the
incredible continuation of tradition in Bali. For each
year there enter the same amount of tourists the
island, than it has inhabitants.

CONCLUSION

There is a try with western percussion instrument
to create an harmonic overtone structure by verying
the shape of the instruments. This try is not found in
indonesian culture among others. The reason could
be found in the different world views of these cultures.
The hindu thinking of  the only common feature of all
things being the existence of these things is different
from the western view of a hierarcical structure of nature,
which is found in the cognitive fusion of  harmonic
partials in just one not seperatable sound sensation.

Also a special behaviour is found with the
percussion instruments discussed here compared to
non-percussion instruments. Normally non-percussion
instruments (as discussed in the introduction of this
paper) are not able to start without a kind of chaotic
behaviour or a strong complexity. But with one of the
here analysed percussion instruments - the Gong Gede
- there actually is no such chaos within the initial
transient. This is unusual and may be caused by the
hugh weight of such a big instrument as a gong, for
also the churchbell does not change its correlation
dimension value through time.

As expected, larger percussion instruments keep
their complexity for a much longer time. So their
initian - if one should say so - is very long. On the
other hand, small percussion instruments have such a
short initian, that it is beyond the second integration
time of the ear and can just be perceived as a whole.
They have a real initian like non-percussion
instruments - the violin or the saxophone as discussed
in the introduction. Short after the inition, the fractal
correlation dimension decreases to 1 < C < 2, so just
one strong sinusodial partial is left behind (or only
the harmonic overtone structure, when talking in terms
of non-percussion instruments).

These findings like everything in experimental data
in music are just tendencies. There may - and there
will - be found exeptions.

Fractal correlation dimensions and discrete-pseudo-phase-plots of percussion instruments in relation to cultural world view
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