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Abstract ¢
Fractal correlation dimensions C and discrete-
pseudo-phase-plots are presented for four percussion T 3

instruments to show basic kinds of persussion
instrument behaviour. The xylophone and the
churchbell - a small and a large instrument - are two
wester n examples, which are shaped in away to have
- among inharmonicity - at least some harmonic
partials. The tibetian zZimbel and the javanese gong
gede- againasmall and alarge one - are non-western
instrumentswith just inhar monic overtone structures.
The initian of the small instruments have C = 3.5
(xylophone) and C = 6 (zimbel) within the first 25ms
respectively 50ms. Then the inharmonicity dies out
and it is C = 1 in both cases.The second integration
time of the ear, which is about 50ms, makes it
impossible for listeners not to perceive these initians
asawhole, because of the shortness of theinitian. So
a real initian like in non-percussion instruments is
present here. The large instruments on the other side
keep their valuesthroughout the first 400ms. The gong
gedeisthe only instrument examined (which includes
also non-percussion instruments in former studies),
which can be struck in a way, that no chaoticity
appears. Thetry of western music to have a harmonic
structure in partials, which is not present e.g. in
indonesian musicisinter preted in termsof the different
world views of these cultures.

K eywor ds. Percussion instruments, fractal correlation
dimensions, discrete-pseudo-phase-plots.

INTRODUCTION

Initial transientsof musical instrumentsarein many
casescruicia for identification of theinstrument class
[Reuter 1995, Grey 1977,2 Grey & Moorer 19772
Wessel 1979,* Krumhand 1989,° Iverson & Krumhand
1993, Mc Adams et a.1995].” In Multidimensional
Scaling Technique (MDS) the similarity judgements of
subjects are related to the physica parameters of the
sound. It comes out, that three dimensions are enough
to explain about 80 % of all judgements. The most

~I.

common dimension isthe spectral centroid Z, whichiis

S = Z frecuency » amplitude( fecuency)

> amplitude( frecuency) 1)

So after transformation of thetime seriesby FFT -
or by Wavelet-Transform - the weighted frequencies,
renormaliezed by the amplitudesiswhat isa soreferred
toasbrightness. Themorehigher frequencieswith grester
amplitudes exigt, the brighter is the sound. It is widely
agreed, that thisis the best identification procedure for
instrument sounds during the so called steady-state
[Kostek 2001]. This steady-state is reached after about
50msin gengral. But this range can vay alot [Luce &
Clark 1965]." So a piano sound has a transient phase,
which lasts for about 2ms in a middle pitch region,
while an flute organ pipe can take about 300ms to
finally reach the steady state.

But this steady state is also not totally steady. It is
asoreferred to asaquasi-steady-state. Thisisbecause
instruments like the violin or the saxophone keep
producing the tone after the initian by steady bowing
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or blowing. So during continuing the sound, there are
wide possibilities of controlling it like canges in
loudness, or brightness (the centroid) or through
vibrato. In MDS experiments this feature comes out
to be the second dimension. The instruments where
the player is able to continue the sound, have during
the continuation in a middle pitch region very good
identification possilibities, e.g. the violin can be
identified due to the bowing noise which is produced
by steady glueing and releasing of the bow on the
string. Therelease break causesashort ilgnpulse, which
is the cause of the noise [Glith 1995]." The lip- and
reed-driven instruments are said to have a formant
region, a frequency band, in which the harmonic
overtones have aways higher amplitudesindependent
from the played pitch. Thereasonisaconstant closing
time of the reed or lip during the vibration over all
playable notes of the instrument This causes a
frequency band to act as formant, which can be seen
by Wavel et-Transforms. But al so theseinstrumentsare
sometines hard to identify. The saxophoneisvery hard
to distinguish from a clarinet in high regions. The
fundamental sin the overtone structure get higher than
the formats of the instrument. Also the initian is so
short, that it can no longer serve as identification.

The third dimension in the MDS is the initial
transient. It was referred to as inharmonicity.
Investigations concerning the ‘chaoticity’ of sounds,
namely the fractal correlation dimensiop and an
information structure [Bader 2001 a, b] " showed
that violins have the most complex initian with
dimensions up do D=8. The reed-instruments like the
clarinet and the saxophone are in a middle region -
together with theclassical guitar - and havedimensions
around D=3. In was shown, that the value of the
dimension is related to the overall rules, governing
thesound. A harmonic overtone spectrumisD=1. Each
inharmonic component above a certain amplitude
threshold increases the correlation dimension by one.
Also strong amplitude changes are taken as an own
rule and again increase the dimension by one.

But the pitch and the musical expression of the
player change the dimension from sound to sound.
There is not a single dimension value for each
instrument. This is caused by the fact that music is
lively and rich and instruments are built, which have a
hughe amount of degrees of freedom. Theviolin shows
anindependence of thedimensioninregard of pitch, but
avariety of possibilities with loudness and attack (hard
or soft attack). The guitar on the other side is not so
much dependent on loudness, but on pitch, because the
lower strings are much more stiff and are not able to
vibrate in very complex fashion. Although the clarinet
isableto increasethe sound continuedy after theinitian
and so avoids a hard attack, the low initian itself has
never just a dimension of D=1, like the steady-state
thereafter. But the pianissimo beginning makes the
tone sound very smooth even with such an initian.

Now theinitian of percussioninstrumentsis caused
by the most simplest driving mechanism: an impulse.
This impulse has the strcture of a gauss distribution
with a drift to smaller time values. [Borg 1983].  If
the impulse would be a dirac deltaimpulse, it would
have an continous spectrum (or white noise musically
speaking). The impulse is not a perfect dirac delta,
but serveshereinthe sameway by driving all possible
eigenvalues of the vibrating system nearly with the
same energy. These eigenvalues or eigenfrequencies
of the intrument normally need no more than at least
one sinusodial period to be stable and so thereis no
initian aswith the other instruments, which are mostly
coupled vibration systems. But nevertheless do
percussion instruments have an initial transient. This
is because most of the driven modes are damped very
fast. They appear just within the first 50ms or so and
dieout imeadietly. So they do not reach thetime border
of 50ms (second integration time of the ear) beyond
which aclear pitch is percieved. They sometimes not
even reach thefirst integration ear time of 5ms, which
is at least needed to built up the critical bands in the
coclea. So subjectivly for the listener, there is an
initian, which isa'‘ conscious unit’, that means, it can
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not be divided into smaller subpieces in means of
perception or even analysed by the listener.

But there are also findings, that the initian
sometimesis more complex. First, instruments struck
by soft mallets can be damped by that mallet, whichis
not moved away from the surface of the instrument
after struck quickly enough. This can bethe case with
large gongs, like the javanese gamelan gong ged(le
whichisaabout 80cmin diameter [ Schneider 1998].
The backdriving of the gongs surface after the struck
back against the mallet is relatively slow, but as the
gong is played in a more meditativly way, the mallet
is also moved not too fast. The mallet dampes the
initian abit, which isthen expressed in the time series
by an short amplitude breakdown after the initian.
Then the sound continues with normal amplitude.

When interpreting theinitian by fractal correlation
dimension and discrete pseudo-phase-plots, each
frequency component has an own dimensional value.
This is, because most percussion instruments do not
have an harmonic, but an inharmonic overtone
structure. The vibration is one of bending modes, not
of transverse vibration. Bending, which
mathematically speaking is caused by the fouth
derivation of the space variable compared to transverse
vibration (of a string, air column etc.), which is the
second derivation of the space variable is like the
relationship of dependence of the curvature of
curvature to just the curvature (because curvature is
the second derivation in space).

2 2

0y __E-K® 0y
E @)

In 2b, the partial differential equation of the
bending, x andy arethe space coordinates, tistime, E
is Youngs modulus, p isdensity and K isthe radius of

gyration. In 2a, the equation of the string vibration, ¢
isthe speed of the soundwave. As2ahasassolution a
harmonic overtone structure, 2b when applyed e.g. to
a rod has an inharmonic overtone structure
independent from boundary conditions. These
boundary conditions chance the eigenval ues, but they
never come to be harmonic.

In western tonal music there is nearly aways an
harmonic overtone structure wanted. From a
standpoint of theinstrument builder thisismuch harder
to achiev. The strings has to be streched with much
tension, adrum skin hasto be very thin but must stand
strong pressures, when streched. The only easy
example is an air column. And this aso is the only
way to get loud sounds without the use of aresonance
body, which again acts with bending modes. So a
harmonic overtone structureis much harder to achieve,
because one has to overcome the gyration of mater.

The only western percussion instrument, which has
anearly harmonic overtone structureisthe xylophone.
This palisander stick has a cutoff so that the second
eigenvalue of the stick isgle double octave of thefun-
damental. [BolrSg 1983, reviewed in Fletcher &
Rossing 1999]. " Also round percussion instruments,
like some drumsor cymbal s have not only inharmonic
relations, but also some harmonic ones, because of
the the combination modes of ring- and radialmodes.

The used xylophone beam made of Palisol, which is a
substitute for the rare wood Palisander.
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METHODS
Fractal Correlation Dimension

Correlation dimensions are well known in fractal
geometry and used to calculate a fractal dimension
from a time series. The other fractal dimension
calculationsliketheinformation dimension or the box-
counting dimension are normally only used with two-
dimensional fields, in which several points (i.e.
measurement values) are plotted. Thereisno timelike
relation between the plotted points, what matters is
just the spatial distribution. These dimensions could
be applied to more than two-dimensional fields, but
the calculations are very complicated then (especially
with the information dimension).

The dimensional -problem does hot occur with the
correlation dimension. High dimensions can be created
easly. We have to keep in mind, that a 2-dimensional
field as mentioned above may bei.e. asurface structure
of amaterial and it would make no senseto transformiit
into ahigher dimensiona field. Time series on the other
hand are originally just one-dimensional. So any higher
dimensiondity with time seriesis dways artificial. But
it isaway to describe the time series content in amore
abstract way. To see this, we have to look first at the
formalism of higher dimensiona embedding.

The time series is embedded in a d-dimensional
space which is done by forming vectors of length d.
Their components are the values of the discrete time
series of the sound, staring from time point t and taking
thevaluest+n * 9,(n=0, 1,2, 3..d-1). discaled
delay variable and in this paper & = 4 is always used
with correlation dimensions. & = 4 is the minimum
valuewhich causes correct results. Greater values can
be used, but no smaller ones [Keefe & Laden 1991].
Sotakingd=4andi.e.d=5, thefist vector would consst
of the amplitudes taken at time points (1, 5, 9, 13, 17).
The second vector would be the amplitudes of the time
points (2, 5, 10, 14, 18) etc. So in the end for atime
series of N points, we have N - 8* d vectors (the last &
vectors cannot beformed, becausethetime seriesends).

The reason for this embedding is, that complex
time seriesare made simple (but with the disadvantage
of high dimensionality). Would we take a sinusodial
time series, inatwo dimensional space, acirclewould
arise. If we add another sinusodial component, in the
same two-dimensional space there would be seen a
kind of Lissgjous figure. But if the take a three di-
mensiona embedding, this figure dissolves into two
circles. For more complex time series higher
embeddings are used. In theory, for a final fractal
correlation dimension d, (2 * d ) + 1 embedding
dimensions have to bee used. In practise thisis true
for time series, which are very long and do not change
through time. For transients, which are analysed in
this paper with short and changing time series, much
higher embedding dimensions are necessary. In short
a harmonic overtone structure will result in afractal
correlation dimension of C = 1, no matter how many
harmonic componentsthereare. If just oneinharmonic
component is added, C rises by one. As an example,
in Table | there are correlation values for a balinese
xylophone with aloud inharmonic overtone structure.

Plate initian C atter 1s
1 6.8 2.5
2 4.4 25
3 55 2.0
4 3.6 1.5
5 6.5 1.2
6 5.0 1.3
7 6.5 25
8 3.5 3.0
9 6.5 3.0
10 6.2 35

Tabla I. Correlation dimensions of a balinese Gender dasa
plates 1 (lowest) - 10 for the transient and at t = 1s after the
initian. The value of the dimension is the amout of
inharmonic overtones within the spectrum over a certain
threshold. As the tone of this bronze xylophone is hearable
even a minute after the struck, most of the eigenvalues of
the plates are gone short after initian. These fast damped
frequencies can be said to be the initial transient of the

gender. The time intervall of calculation is both times 50ms.
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The used ballnese bronze xylophone Gender
means Gender with ten plates. The frame is usually with
wood-carving. This one was bought by the auther directly
from a manifacturer in the town of Sawang, Bali and is a
single instrument not used in an orchestra before, a typical
practicing instrument used by musicians at home.

Now out of the N-d * & vectors a matrix is built,
which represent the distances of each of the vectors
from all others. Then the vectors-distances have to be
counted, which are larger than athreshold r,

N-n*d N-n*d

c(r)—(N n-5) Z Ze(r—mak) v(tl)j
2

and normalized by, as can be seen in (3). The
Heavyside function is 1 for the distance of a vector
beeing geater than r and otherwiseitis0. The slope of
theplot Log C(r) vs. Logr isthe correlation dimension.
The Log/ Log - plot isthe usua calculation method
for fractal geometry, which seemto b7e aphaenomenon
often found in nature [West 2001].

Discrete pseudo-phase-plot

The second method used here is a visual
representation, the discrete pseudo-phase-plot. It is
based on the calculations of the d - dimensional
embedding discussed with the correlation dimension.
But herewe have only d = 2, because the output should
be a two-dimensional graphical representation. Now
al the vectors created through the embedding are
plotted into atwo dimensional grid with a certain box

size. All points falling into one box are counted, so
thisisalso akind of box-counting method known from
fractal geometry. So each box has a certain value and
therefore certain plot methods can be used to show
the results (3D plot, density plot, contour-plot etc).
Here a contour plot is used for a 3D plot would have
to have a viewing angle and therefore the plot may
not be represented in a good overall view.

Theright box sizeis cruicia for good results. For
avery wide box would have too many pointsin it, so
there would be no good differentiation. On the other
hand, boxes that are too narrow may count just afew
points (or even just one). This representation would
bethe same as plotting just the pointsin atwo-dimen-
sional array, which can be helpfull sometimes with
time series, which arequiteregular. Thetransient time
series used here are more complex and it was found,
that the discrete pseudo-phase-plots are a very good
graphical representation for them.

Wavelet transform

Also Wavelet-Transforms are used here. This
method is an excellent tool for small time series as
transients, as one can zoom into the sound as needed.
Also therelation of frequency vs. time accurancy, the
problem of the uncertainty principle, can be choosen
freely. Hereacomplex Morlet Wavelet isused [Haase
etal. 2002] inthe discrete form, because theinput is
the discrete sampled sound time series:

2/ .
DWH(@w, ) =+ = S f(t+b)e oo, 4 du
N 4 @
Here, the Discrete Wavelet-Transform DWf
depends on the frequency w and the place in thetime
series (the physical time) for which the transform is
done. f is the discrete time function and N is the ac-
tual number of time points, which are summerized.
w, is comparable with the time window in classical
FFT. A larger value of w,will separate nearby
frequencies, a smaller value will show the detailed
amplitude structure and frequency shifts.
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RESULTS

To show the difference between western and non-
western percussioningrumentsintheir physical structure
andintheir sounds, four instruments have been analysed.
With the two western instruments thereis asmall one -
the western xylophone - and alarge one - a churchbell.
This idea was also used with the non - western
instruments, a small one - the tibetian zimbel - and a
large one - the javanese Gong “ Gong Gede”.

It is shown, that both western instruments are
prepared in a way to have a harmonic overtone
structure, while the two non-western instruments are
not tuned like this. The reason for the - in western
eyes - untuned manner of the zimbel and the Gong
Gede can not be found in any carless construction.
For the Gong Gede is found to be not exactly round,
causing avibrating sound, which representsthe quality
of the Gong. And the zimbel is made with beautiful
handcraft and formed very precise in shape.

Tibetian zimbel

First we examined atibetian zimbel, whichisusually
used inreligioscontext. Itisasmall handbell andis9cm
in diameter and 7cm in hight without the stick. [For an
overvi aw of the vibration of handbells see Rossing
2001].

The used handbell, normally used in religious ceremonies,
e.g. in tibet.

Figure 1 shows the time evolution of the discrete-
speudo-phase-plott for the first 400ms from initian. It
shows up, that the initian itself has a correlation
dimension which is about C = 6 but very unstable, so
the sound ist really chaotic. This can clearly be seen
with the Wavelet - Transform (Figure 2).

Fig. 1. Discrete pseudo-phase-plots of a zimbel. Time step:
50ms, last plot up to 400ms. Here C is just approximable
for the first 50ms. There are too many frequencies. At least
it is about C » 6 but there is too mach ‘chaoticity’ in the
initian. But the second 50ms have a clear dimension of
C=1.8, which decreases with time up to C=1.0 for a
sinusodial. The sound of a zimbel also lasts for about a
minute to die out, but here the higher harmonics are just
present within the first 50ms over a certain threshold.

Wassdet - Transhwrns onbed (400 ey

21 bk
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Fig. 2. Wavelet -Transform of the zimbel sound in the first
400ms.
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Theinitian has broad bands of frequenciesinstead
of discretevalues. Thiswould bevery unusual for non-
percussion instruments. But after this initian, the
values decrease to between 1 < D < 2, so thereisjust
one strong harmonic partial left. The other partial in
figure 2, that can be seen is much lower in amplitude.
In higher regions over 10 kHz there are partial dying
out very quickly. Also aconstant amplitude oscillation
can beobservedin al partials. Thisisalwaysthe case
in any kind of instruments. It may be caused by an
interchange of energy between the modes.

Western xylophone

Next axylophone beam was examined theoretically
and experimentally. For thg theoretical values a
method of Borg [Borg 1983] ~ was used. It takes the
Rung-Kutta method to evaluate the eigenvalues. As
the differential equation is fourth order, two Rung-
Kutta algorithms are combined. The xylophone has a
cutoff (Fig. 3) for tuning the second and third partials
to the double octave and thefifth over thethird octave
(or the middle of the major and minor third over the
third octave, which listeners found as the most
interesting sound color). The first cutoff tunes the
second partial, the second cutoff tunesthethird partial.
Now thiscutoffs cause theradius of gyrationto change
throughout the beam. This changing can be modelled
by the Runge-Kutta method, because this method

Fig. 3. Shape of the xylophone-beam of length 31 cm with
two cutoffs, the large first cutoff and the small second cutoff
in the middle. The length from top to the beginn of the cutoff
is 8,2 cm, the curvature of the cutoff 3,0 cm, the way to the
second cuttoff in the middle is 3,7 cm, the second cuttoff is
1,2 cm. The curvature is sin (x)°.

partitions the beam. Each partition is given his own
radius of gyration. For calculation of the correct
eigenvalue, a certain value is estimated. This first
extimation is not correct, but we increase or decrease
thisvalue aslong as we found the right one. Now, the
Runge-Kutta is calculated twice for one eigenvalue
which different boundary conditions. The two
curvatures of the beam w can be expressed asalinear
combination of the two single versions with two
constants C:

W(X) = CWi(X) +Cva(X)

Now thetwo curvatures are for the boundarysin x
=0asw,(0) =1 and w,(0) = 0. Only when the chosen
eigenfrequency is correct, this is aso fullfilled with
the momenta- second derivation - and theforce- third
derivation - (which is not the restoring force). The
results when reaching the end of the beam can be
written in two equations, which only when both are
satisfied, if the eigenvalue of .

d’w d’w
M(l):0:C1(T)x:1+C1( 5 2)><:1

d x d x

d’ d’w
FO=0=C( )G )

dx d'x

is correct. Then the determinant of the two equations
becomes zero. The agorithm was implemented with
theassumption of thefirst curvature being asinusodial
curve from phase ¢ = 0to ¢ = 17/2. When powered by
valuesp < 1, the curvature becomes moreflat. Asthere
isno rulefor the curvature, different values of p were
used. A pure sine curve seemsto fit best.

But in all cases, there was one mode missing
compared to the measured results (Table I1). The
frequencies f1, f2, f5 and f6 of the theoretical
calculations fit satisfying to the measured f1, f2, f6
and f7, but f3 and f4 (theoretical) face f3, f4 and f5
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Measured

fl 260,1 Hz

f2 1055,0 Hz 24,1 cent + 1 Okt

f3 2658,1 Hz 423,9 cent + 3 Okt
f4 4954,6 Hz 302,0 cent + 4 Okt
5 6496,8 Hz 771,1 cent + 4 Okt
f6 8198,1 Hz -26,2 cent +5 Okt
f7 103243 Hz 373,0 cent + 5 Okt

Theoretical (p = 1)

f1263,1 Hz

f2 10504 Hz -3,5 cent+ 20kt

f3 2912,3 Hz 561,5 cent + 3 Okt
f4 5814,2 Hz 3558,4 cent + 4 Okt
5 8279,1 Hz -29,7 cent + 50kt

f6 10 688,2 Hz -413,1 cent + 5 Okt

Theoretical (p =.7)

fl 261,9 Hz

f2 1030,9 Hz -27,9 cent+2 Ok t
f3 2808,2 Hz 5072,0 cent + 3 Okt
f4 5644,4 Hz 3515,7 cent + 4 Okt
f5 82455 Hz -28,2 cent +5 Okt
f6 10691,6 Hz 421,6 cent + 5 Okt

Theoretical (p = .4)

f1 259,6 Hz

f2 997,6 Hz -69,3 cent + 2 Okt

f3 2648,0 Hz 420,0 cent + 3 Okt

f4 5368,9 Hz 444,3 cent + 4 Okt

f5 8143,1 Hz -34,5 cent+5 Okt

f6 10 712,2 Hz -4140,2 cent + 5 Okt

Tabla Il. Measured and calculated eigenvalues of a Orff-
Xylophone beam of length 31 cm. It can be seen, that for all
curvaturesp =1, p=.7 and p = .4, there is one mode missing
compared to the measured values. This may be caused by
a mixed mode of longitudinal and transversal bending. All
of the values exept for the fundamental frequency exist just

within the first 40 ms after the struck.

(experimental) with no clear connection. There seems
to be acombination mode along and perpendicular to
the beam length, which causes a new eigenvaue. In
theory, the beam was assumed just as beam, not as
plate which has combined modes.

The phase-space in figure 4 shows the time
evolution of the xylophone. The fractal correlation
dimensionisC=2.5inthefirst 25ms. Then it decreases
to1<C<2. Thelow valuefor theinitian isexplained
due to three partials beeing in harmonic relations as
mentioned above. A harmonic overtone structure has
the Dimension C=1, so here at |east 1 more overtone
ispresent in the sound. The second reason hereisthat
the beam was struck as soft as possible. But even then
adimension of C=1 for theinitian can not be reached.

Churchbell

After the results for small instruments, here the
xylophone and the handbell zimbel, two large vibrating
systems, a churchbell and a gamelan gong gede are
examined.

Fig. 4. Discrete pseudo-phase-plots of a palisander Orff-
xylophon. Time step50ms. Like in the case of the zimbel,
the first 25ms have C=2.5, which is not so much, because
the strike was as smooth as possible. But even then there
are at least 4 overtones above the threshold, because the
xylophon has three harmonic partials, which would rise to a
dimension of D=1. But the higher partials die out quickly for
only the time interval 25ms < t < 50ms has a dimension of
C=1.5. This can clearly be seen by the nearly perfect circle
in the second picture of this figure. Also the overall amplitude
of the sound decrease quickly. Because of a high sampling
frequency of 96kHz, it was possible to calculate a dimension

within only 25ms istead of the usual limit of 50ms.

The churchbell sounds for a long time. Figure 5
showsthe phase-pl ot evolution. There seemsto be no
fundamental change through time, which is also
expressed in the correl ation dimension value of C=3.5
throughout the 400ms. A churchbell also has a kind
of tuned overtone structure with octaves and normally

Fig. 5. Discrete pseudo-phase-plots of a church-bell. Time
step: 50ms, last plot up to 400ms. The fractal dimension of
C = 3.5 does not change during the sound. Church bells
continue their sound long after initian. Because of the finite
number of points in a sampled sound interval, it hardly
possible to calculate fractal correlation dimensions for time
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a minor third [minor-third bell see Rossing 2001] 2
Sothisvaueof 3.5 meansat |east two strong additional

overtones added to the harmonic structure. As a
characterization of achurchbell itissaid, that theinitial

struck is bright and first the prime toneis heared as a
fundamental. But after awhilethe so called hum tone,

whichisan octave beneath the fundamental isaccepted
as the fundamental, because the higher modes died out.

But this lasts more then 400ms. So here it can be seen,

that compared to the smaller instruments, the compexity
of achurch bell stays on, as expected. Theinitia burst
of inharmonic high componentsin aWave et-Transform
iswasfound, that this special sound actually do not have
aninitial struck, the partialsarejust sarting, which itself

isheard asastruck. But the sound itself ispercieved still

asanorma church bell sound.

Javenese gong «Gong gede»

The last example is that of a javanese gong gede
with adiameter of d = 80cm. It isthe only instrument
we observed which has acorrelation dimension value
for theinitian C < 2, which means there are no large
inharmonic overtones or any other chaotic behaviour.
figure 6 showsthetime evolution in phase-space. The
pictures show a clear circle which is getting larger
and smaller. Thisisdueto the so called ‘ombak’. The

Fig. 6. Discrete pseudo-phase-plotts of a Gamelan Gong
Gede. Time step: 50ms, last plot 400ms. The Gong has a
strong fundamental frequency and so is one of the few
examples, of a correlation dimension of C = 1.3 throughout
the initian (a sine tone would have a circle in the phase plot,
which is also the case here). The beakdown of amplitude
towards picture 7 of this series and again an increase in
picture 8 shows the so called ‘ombak’ of this Gong.

diameters of the gong are not exact equal. So for each
diameter there are different mode frequencies, which
vary only abit. Theresult is an amplitude oscillation,
abeat, which isaquality criterion for that gong. But
of coursethisdoes not change the dimension. It could
only do so, if avery large timewindow would be used
for calculation. The listener hears a very low sound
with the ombak and without a certain initian just due
to the fact, that the sound starts.

But in musicology not only the pure sounds have to
be analysed. Thereisaso aneed of aninterpretationin
termsof what music meansto people. Although adetailed
discussion is beyond the scope of this paper, just afew
ideas should be presented here. The hermeneutical
interpretation of music is derived out of analogies
between the structure found in the musical syntax or
sound and the structures underlying non-musica terms.
[For an ana ogy between theworld view of cultures and
the music they use see e.g. Bar-Yosef 2001]

In terms of musical syntax a very widely known
concept isthat of tention and relaxation, of kinetic, and
static energy in the musical flow [Kurth 1931]
possible analogy in terms of an inharmonic overtone
structure is the missing fusion of sounds. [A review of
fusion as used by the phenomenology and gestaltza
psychology especially by Stumpf see Schneider 1997].
Fusion means, that in the case of a hamonic structure,
the listener is not able to perceive the singel sinusodial
components out of the sound. Fusionisahole of indivi-
dual components. But these components do not |oose
their individuality through fusion. Rather without these
individualities, fusion would not exist. Inharmonic
overtones are not fused. Every component isheard asa
single one.

The inharmonic structure can be refered to the
hindu religios concept of many diversive partsexisting
next to each other, but without a need of a common
rule, for ahindu does percieve god asthe nature of all
things in all things [which may be compared with
Heideggers ,,Ding an sich”, which means existence
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per se] 2 Just the pure existence is the common rule,
not aspecia individua property. The Western thinking
incontrastishieracically. Thereisasearch of common
rules building up the structure, which are found in a
common fraction of the sinusodial frequency values.
The connection between the harmonic / inharmonic
overtone structure and the world view isargued to be
through the consious space being the same in both
cases. If we hear an inharmonic sound, the conscious
space, in which we are in that moment, is one of
diversive things existing next to each other without a
common denominator.

The same thing happens, if weimagine - or have
to deal with - different diversive cultures, which
are all at once in our consious field. The subjects
are different - here overtones, there cultures - but
in abstraction, it is the same experience we make.
This can also be refered to by the fact, that all sen-
sual information adapted by different sensesall end
to be activation potentals in the nervous brain
system. This may be the cause of many spacious
words - derived from vision - in terms of music
(high / low pitches etc.). The cultural diversity is
more abstract than that, but it may be the same
phaenomenon on a higher level.

Of course we have to be carefull in this field,
because anal ogies work in some places but can fail
in other example. Hindu religion also have a
hierarchy of gods and know hierarcical structures.
But they also have the world view mentioned above
and this can be refered to with the problem of
inharmonic spectra. So like in statistical empirical
work, just tendencies can be found. In the case of
Bali, where | did some field work, the analogy is
guite obvious and the hindu concept of accepting
foreign ways of thinking is a major part of the
incredible continuation of traditionin Bali. For each
year there enter the same amount of tourists the
island, than it has inhabitants.

CONCLUSION

Thereis atry with western percussion instrument
to create an harmonic overtone structure by verying
the shape of the instruments. Thistry is not found in
indonesian culture among others. The reason could
befound in the different world views of these cultures.
The hindu thinking of the only common feature of all
things being the existence of these things is different
fromthewesternview of ahierarcical structure of nature,
which is found in the cognitive fusion of harmonic
partials in just one not seperatable sound sensation.

Also a special behaviour is found with the
percussion instruments discussed here compared to
non-percussion instruments. Normally non-percussion
instruments (as discussed in the introduction of this
paper) are not able to start without a kind of chaotic
behaviour or astrong complexity. But with one of the
here analysed percussion instruments - the Gong Gede
- there actually is no such chaos within the initial
transient. This is unusual and may be caused by the
hugh weight of such a big instrument as a gong, for
also the churchbell does not change its correlation
dimension value through time.

As expected, larger percussion instruments keep
their complexity for a much longer time. So their
initian - if one should say so - is very long. On the
other hand, small percussion instruments have such a
short initian, that it is beyond the second integration
time of the ear and can just be perceived as a whole.
They have a real initian like non-percussion
instruments - the violin or the saxophone as discussed
in the introduction. Short after the inition, the fractal
correlation dimension decreasesto 1 < C < 2, so just
one strong sinusodial partial is left behind (or only
the harmonic overtone structure, whentalking interms
of non-percussion instruments).

Thesefindingslikeeverything in experimental data
in music are just tendencies. There may - and there
will - be found exeptions.
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