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Abstract 

This note is dedicated to undergraduate students 
who wish to enroll in the control engineering 
program. Some basic notions encountered in 
control engineering are discussed. The main 
difficulties encountered in the design and 
implementation of controllers are explained in 
simple terms without entering deeply into the 
mathematical details. Finally, some conclusions are 
given. 

 
1. INTRODUCTION 

The fundamental objective of control 
engineering, as a science discipline, is to control a 
dynamical system. The common meaning of the 
verb to control is to verify,  to inspect and to master. 
However, in control engineering, to control a 
system is understood more in the sense of mastering 
a system even though the inspection and monitoring 
of a system  is also part  of the discipline.  By the 
term dynamical we refer to something which is 
evolving with time. Finally, we must give a precise 
meaning to the word system in the context of 
control engineering . Indeed, the word system has a 
very broad meaning in everyday life. Normally, by 
this word one would understand an abstract set of 
things which are interconnected in some way or 
another; for example we talk about solar systems, 
meteorogical systems, political systems, physical 
systems etc.. Evidently, such a broad meaning 
would not be appropriate in the context of control 
engineering  since a precise mathematical analysis 
is required for its study. 

A first definition of a dynamical control system 
in the context of control engineering would be the 
following : 

Definition. A dynamical* control system is a system 
whose behaviour can be modified by some external 
actions. 

 For example, the meteorological system is not a 
control system since we cannot stop the rain from 
falling or the sun from shining. On the other hand, a 
car is a control system since we can make a car 
accelerate, decelerate or even stop, whenever we 
want to. More precisely, in this case, we would talk 
of controllable systems. 

The external actions are known as inputs, 
commonly denoted by the function u(t). They are 
responsible for changing the behaviour of a system. 
The inputs maybe measurable or nonmeasureable. 
Non measureable inputs are usually known as 
perturbations or disturbance. Somehow or other 
disturbances are always present in a system. In this 
note we shall not discuss the aspects of disturbances 
even though, in the majority of cases, a control 
design makes sense because of the presence of 
disturbances. The measurable inputs are in fact the 
only degree of freedom that we, as control 
engineers or technicians, have in order to influence 
the behaviour of a system.  They are signals 
provided by the actuators. 

Normally, we study the behaviour of a system 
via some signal or function which characterises the 
system. If the signal is measured then it is referred 
to as an output of the system  and is commonly 
denoted by the function y(t).  These are signals 
coming from the sensors. For example, the 
behaviour of the temperature of a room is observed 
via a thermometer, or the pulses of a patient’s 
heartbeat is studied via  the signal issued by a 
cardiogram. 
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From the above definition, one would intuitively 
understand that a system possesses a unique 
behaviour at a time. For example, a car cannot 
accelerate and decelerate at the same time. 
Mathematically speaking, a system can possess two 
or more behaviours at the same time. These are 
systems where bifurcations are present and are 
chaotic in nature. However, the great majority of 
systems in the industry possess the propriety of 
presenting one behaviour at a time. We shall see 
later what this property means in mathematical 
terms. But first of all, before coming to this point, 
we should know how to represent a system 
mathematically. 

 

2. REPRESENTATION OF A SYSTEM 

To study the behaviour of a system correctly, it 
is necessary to give a representation or a model of 
the system. 

From the above definition a schematical 
representation of a system would be as follows: 

Fig.1. System 

However, to study the system in a more 
mathematical way, control engineers usually adopt 
different points of views depending on the nature of 
the system.  

Input-output point of view 

 One point of view would be to view a system as 
a function S which to the function u(t) will associate 
another function y(t); i.e. S: u(t) ! y(t)=S(u(t)) . 
This described in the figure 2 below. 

Fig.2. Input-ouput representation 

 

This point of view is known as the input-output 
point of view and the relation y(t)=S(u(t)) is known 
as the input-output relation. Therefore, roughly 
speaking, a system, from this point of view, is a 
function of functions.  It should be noted that u(t) 
are not arbitrary functions. They are usually 
bounded functions and they take the value zero for 
negative times. These kinds of functions are known 
as causal functions. In simple terms this reflect the 
fact that an action cannot take place in negative 
times. It takes place only at the instant it starts 
acting on the system. For example, a car will not 
start before  we turn the key or the temperature in a 
room will not rise before we turn the heater on.  

It is well-known that for linear systems the 
function y(t) is given by  

y(t)= ∫ −
t

dvvtuvh
0

)()( . 

In the case of linear systems, we can also work 
in the frequency domain instead of the time domain 
and the above input-output relation is given by the 
well-known transfer function 

Y(s)=H(s)U(s) 

where Y(s), H(s), U(s) are the respective Laplace 
transforms of the functions y(t), h(t) and u(t).  

State-space point of view 

Another point of view would be to assume that 
the system is characterised by a time-dependent 
vector x(t) known as the state of the system.  The 
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state of a system is in fact the minimum number of 
variables that are needed to characterise a system 
completely. For example, a moving particle is 
completely characterised by its position and 
velocity. Any additional variable would necessarily 
be a function of the position and velocity, and 
would constitute a redundant information on the 
system. 

The state of a system is a vector which evolves 
in time and is therefore characterised by a 
differential equation of the form 

(Σ):    
dt

dx
 = f(x, u),      y = h(x, u) 

where x=(x1, x2, ..., xn )∈ Rn ;  u=( u1, u2, ..., 
um)∈ Rm and y = (y1, y2, ..., yp)∈ Rp. 

 

This means that we have n state variables which 
characterise the system, m inputs acting on the 
system and p variables which are measured from 
the system. The number n is known as the 
dimension of the system. The outputs y1, y2, ..., yp 
are supposed to be independent of each other. This 
representation is illustrated in the figure below: 

Fig 3. State-space representation 

The number p is usually less than or equal to n. 
In the case where p is strictly less than n, this means 
that only part of the state variable can be measured. 
We shall see later that this has important 
implications regarding the implementation of a 
control law. 

If the system is linear then the function f(x, 
u)=Ax+Bu and y=Cx+Du, where A is a n×n matrix, 
B is a n×m matrix, C is a p×n matrix and D is a p×m 
matrix. 

Knowledge-based representations 

The above two point of views are based upon a 
mathematical description of the system. However, 
when the system is of a very large dimension or is 
very complicated and its dynamics  not well-known, 
it is not always easy to provide an adequate 
mathematical model of the system. In such a case, 
we can give a representation of the system based 
upon the qualitative knowledge that we have on the 
system. Representation via artificial intelligence, 
expert systems, neural networks, fuzzy logic, all fall 
in this category. 

In this note, we shall only study the state-space 
representation. 

It is important to note that all of these different 
representations are equivalent. The choice of a 
particular representation is basically motivated by 
two factors : 

i) the nature of the system ; i.e. whether it is 
linear, nonlinear or difficult to model etc .. 

ii) the degree of complexity brought by a 
particular representation ; i.e. whether one 
representation is simpler than another. 

Example  

Fig. 4 : Spring mass system 
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Consider the above spring mass system. Here, u 
is the force pulling the mass M and y is the distance 
between the center of mass and the point where the 
spring is fixed. The quantity y can be measured 
easily and is considered as an output of the system. 
By Newton’s laws of motion, we have 

m
2

2

dt

yd
 + k

dt

dy
 - u=0 

This in fact an input-output relation ship. 

To obatain a state-space representation we set 

x1=y and x2=
dt

dy
. Then, a simple computation 

shows that 

dt

dx1  = x2  

dt

dx2  =-
m

k
x1+

m

u
  

State space analysis 

This particular representation of a system is the 
most commonly used in control engineering 
nowadays and is normally termed modern control 
engineering. This is mainly because there is no 
restriction on the nature of inputs applied to the 
system for its analysis. Recall that classically a 
linear system is studied in the frequency domain 
using Bode or Nyquist plots. For such analysis the 
inputs are resticted to either a step function, a ramp 
or a sinusoidal function. However, in the state space 
representation such restrictions are not necessary. 
Another reason for the popularity of state space 
representation is that complicated control laws can 
easily be implemented due to the advent of 
computers. This was not possible several decades 
ago.  

The study of a system given in state space form 
requires some knowledge of linear algebra if the 
system is linear, or differential geometry if the 
system is nonlinear and obviously some knowledge 
of diffrential calculus.  

As we have mentioned before, the state is the 
quantity which characterises a system.  Therefore, 
we shall first start by studying the solution of  
system (Σ). 

Suppose that time t=t0, the initial value of the 
state is x(t0). Then, by a solution or trajectory of 
system (Σ), we mean any function xu(t ; t0, x0) which 
satisfies the above differential equation with the 
condition that xu(t0 ; t0, x0) =x(t0).  In fact, by abuse 
of language, the function xu(t ; t0, x0)  is simply 
denoted by x(t).  

The way that this solution evolves in time 
characterises the behaviour of the system. That is 
the solution may be increasing or decreasing with 
time or may be constant etc. Roughly speaking, if 
the solution is unbounded then we say that the 
system is not stable otherwise it is stable.  

Example 1.  

Consider the system given by  

dt

dx
 = x+u 

Assume that at time t0=0 the value of the state is 
x(0)=x0. For u=k where k is a constant, the solution 
is given by : xu(t ; t0, x0) := x(t) = et(k+ x0)-k. In 
particular, for u=0, the solution is given by x(t) = 
etx0. Since the solution tends to infinity when t goes 
to infinity, the system is unstable. 

Notice that the solution of a system depends on 
its initial condition and on the input applied to the 
system. This means that if we change the expression 
of u(t) then the solution will also change. In 
particular, if the solution is unbounded, we can try 
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to replace u(t) by another function such that the 
solution becomes bounded. This is the fundamental 
purpose of control engineering.  

Therefore, designing a control law for a system 
means designing a function, which is possibly a 
function of the state or the output of the system, 
such that the solution of the system behaves in a 
desired manner. 

If the control law is a function of the state,  
u(t) :=a(x) , then we call the control a state 
feedback control law. On the other hand, if the 
control law is a function of the output only,  
u(t) :=a(y), then we call the control law an output  
feedback control law.   

Example 2.  

Consider again the above system: 

(S1):         
dt

dx
 = x+u 

If we replace u by u = a(x) = -2x. The the system 
becomes 

   (S2):        
dt

dx
 = -x 

and the solution is given by : x(t) =e-tx0. It is 
easy to see that the solution now goes to zero when 
t goes to infinity. Therefore, system (S2) is stable. 
In the control engineering jargon, system (S1) is 
said to be in open-loop whereas system (S2) is said 
to be in closed-loop. 

It is important to notice that in control 
engineering the functions a(x) and a(y) is denoted 
by u(x) and u(y) respectively ; i.e. u(t) :=u(x)  or 
u(t) :=u(y).  This does not mean that t is replaced by 
x or y in the function u(t). It instead means that the 
function u(t) is replaced by the function u(x). This is 
an abuse of language which is very misleading for 
many students. 

Let us now come back to the definition of 
‘system’ that we gave in the introduction. We said 
that a system in control engineering should not have 
two or more solutions for one initial condition.  We 
might then ask under which condition can we 
guarantee that system (Σ) will have a unique 
solution for a given initial condition. It is well-
known that if the function f in system (Σ) is locally 
Lipschitzian, then there exists a unique solution for 
system (Σ) for a given initial condition. A local 
Lipschitz function is generally a continuous 
function and does not presents any jumps. For 
example, the sign function is not a local Lipschitz 
function.  

There are two important implications for the 
existence and the unicity of  the differential 
equation (Σ). First, we have seen above that 
controlling a system means controlling its trajectory 
or solution. Now, if we have two trajectories for one 
initial condition and we do not know in which one 
of them the system is evolving, then it would be 
difficult to control the system. We might be 
controlling the wrong trajectory! Secondly, if the 
system satisfies the condition of existence and 
unicity of solution, then the trajectories issued from 
two different initial conditions will never intersect.  

Difficulties in control design 

We shall now talk about some difficulties which 
are encountered in the process of designing a 
control law for a system. We shall discuss the 
problem of how to design a control law and the 
particular techniques which exist for designing a 
control law. We shall rather point out the main 
difficulties which one would encounter in control 
design independently of the technique used for 
designing the control law.  

The first difficulty is related to the possibly of 
designing the control law. It is always possible to 



On the problem of control and observation: a general overview 

34  Ingenierías, Enero-Marzo 2000, Vol. III, No.6 

design a controller for a system. We must first 
check if the system is controllable ; if not, we 
cannot design a control law. Roughly speaking, the 
controllability of a system is the property which 
determines whether we can modify the behaviour of 
a system. Another difficulty is that the majority of 
systems in nature are nonlinear and the 
mathematical tools for analysing a nonlinear system 
is not totally established up to now. In particular, 
there does not exist a direct analytical method to 
solve a nonlinear differential equation. Fortunately 
enough, there exists methods to study the behaviour 
of a system without calculating the solution of a 
system (Lyapunov method). 

Implementation problem 

Once we have designed a control law we need to 
know if the latter can be implemented for 
application purposes. It usually happens, especially 
when we are have designed a state feedback control, 
that some state variables that are involved in the 
control law are not available for measurement. This 
is the case where p (the number of outputs) in 
equation (Σ) is strictly less than n (the number of 
state variables). In such a case, the control law 
cannot be implemented.  

One solution would be to design additional 
(hardware) sensors. However, this is not always 
possible and may be very costly at times. For 
example the rotor flux or current in an induction 
motor cannot be easily measured. Similarly, it is 
very difficult to obtain the online concentration of 
certain components in some chemical reactions. 
Consequently, there has been some incentive to find 
other cheap methods to obtain the nonavailable state 
variables. In this respect, it is important to mention 
the new emerging micro-sensor technology. 
Another alternative consists in the design of 
observers. More specifically, an observer is an 
auxiliary dynamical system which uses the 

available measurements on the systems (inputs and 
outputs) in order to provide an estimate x̂  of the 
state of the system. This is schematically 
represented in the figure below.  

Fig.5. Observer 
 

The dynamical nature of an observer means that 
the estimates of the state variable are provided on 
line. Basically, an observer is a software sensor. 
Consequently, the cost of realising an observer is 
relatively low. 

From a mathematical point of view, observers 
and controllers designs are dual problems. 
Consequently, similar difficulties as for the 
controller design are encountered in the process of 
observer design.  

 

CONCLUSIONS 
 

In this note we have briefly presented some basis 
problems that are encountered in control 
engineering. We showed the main difficulties of 
control design and its implementation. We have 
also highlighted the different mathematical tools 
which are needed to analysize a control system 
depending on the representation chosen for the 
latter. It is hoped that this simple note will incite 
some interest to undergraduate students who wish to 
enroll in the subject.  
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