Electronic Operation of Chaotic Systems: Part 1, Quadratic Analogues

Authors

DOI:

https://doi.org/10.29105/ingenierias25.92-55

Keywords:

Chaotic systems, Analog computation, Operational amplifiers, Quadratic nonlinearity

Abstract

Some applications of chaotic systems require their implementation through analog or digital electronics. In this first part, the electronic realization of some well-known chaotic systems with quadratic nonlinearities is summarized, by means of circuits with multipliers and operational amplifiers. The equivalence of its variables and electronic components with the normalized variables and parameters of chaotic mathematical models is demonstrated. In addition, the behavior of each circuit is compared to simulations of their mathematical models. In the following parts of this work, the electronic realization of piecewise linear chaotic systems and implementation in digital devices will be shown.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Francisco Antonio Rodríguez Cruz, Universidad Autónoma de Nuevo León

Graduated from the Electronics and Automation Engineering program, at the Facultad de Ingeniería Mecánica y Eléctrica of the Universidad Autónoma de Nuevo León.

César de Jesús Chacón Rendón, Universidad Autónoma de Nuevo León

Technical Bachelor in Design and Visual Communication (2016), at the Escuela Industrial y Preparatoria Técnica Pablo Livas. He was a student of the Electronics and Automation Engineering program at the Facultad de Ingeniería Mecánica y Eléctrica of the Universidad Autónoma de Nuevo León.

Angel Rodriguez-Liñan, Universidad Autónoma de Nuevo León

Doctor in Electrical Engineering (2009) from UANL, he is a Full Time Professor at FIME, UANL. He received the 2009 UANL Research Award. He is currently the leader of the Mechatronics Technology and Innovation Academic Body. Since 2011 it has been recognized by PRODEP and is currently level I in the SNI. His areas of interest are analysis, estimation, instrumentation and control in dynamic systems, robotics and biomechatronics.

References

Lorenz, E.N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, (1963) 20: 130-141. DOI: https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Kevin M. Cuomo and Alan V. Oppenheim. Circuit implementation of Synchronized Chaos with Applications to Communications. Physical Review Letters. (1993) 71(65). DOI: https://doi.org/10.1103/PhysRevLett.71.65

Olivares, D. Aplicación de sistemas caóticos en control automático. Tesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México. (1994).

Pecora, L. M., Carroll, T. L., Johnson, G. A., Mar, D. J., and Heagy, J. F. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos: An Interdisciplinary Journal of Nonlinear Science. (1997) 7(4): 520-543. DOI: https://doi.org/10.1063/1.166278

Jaimes-Reátegui, R. et. al. Secure optoelectronic communication using laser diode by chaotic Rössler circuits. Journal of Physics: Conference Series. (2001) 274: 012024. DOI: https://doi.org/10.1088/1742-6596/274/1/012024

García-Lopez, J. H. et. al. Novel communication scheme based on chaotic Rössler circuits. Journal of Physics: Conference Series. (2005) 23: 029 DOI: https://doi.org/10.1088/1742-6596/23/1/029

García-López, J. H. et. al. Synchronization of chaotic systems with coexisting attractors. Physical Review Letters. (2006) 96(24): 244102. DOI: https://doi.org/10.1103/PhysRevLett.96.244102

Rodriguez-Liñan, A., de León Morales, J. Sincronización de caos mediante observadores para cifrado en comunicaciones. Ingenierías. (2007) 10(34): 44-50.

Rössler, O. E. An equation for continuous chaos. Physics Letters A. (1976) 57(5): 397-398. DOI: https://doi.org/10.1016/0375-9601(76)90101-8

Braun, T. and Heisler, I. A. A comparative investigation of controlling chaos in a Rössler system. Physica A: Statistical Mechanics and its Applications. (2000) 283: 136-19. DOI: https://doi.org/10.1016/S0378-4371(00)00140-0

L. Pecora, T. Caroll, & J. Heagy. Synchronization in Chaotic Systems, Concepts and Applications. (2006). DOI: https://doi.org/10.1002/3527607455.ch10

Chiu, R., Mora-González, M., and Lopez-Mancilla, D. Osciladores Caóticos implementados en Microcontrolador PIC18F. Nova scientia. (2013) 6(12): 60-77. DOI: https://doi.org/10.21640/ns.v6i12.24

P. Salas C. Análisis y diseño de sistemas caóticos clásicos con base en filtros pasa-bajas. Tesis, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México (2018).

Wang, M.J. Chaotic Control of Lü System via Three Methods. International Journal of Modern Nonlinear Theory and Application, (2014) 3: 29-36. DOI: https://doi.org/10.4236/ijmnta.2014.32005

Malasoma, J.M. A new class of minimal chaotic flows. Physics Letters A, 2002; 305: 52-58. DOI: https://doi.org/10.1016/S0375-9601(02)01412-3

Hambley, A.R., Electronics, (2000) Upper Saddle River, N.J., Prentice Hall.

Lü, J. and Chen, G. A New Chaotic Attractor Coined. International Journal of Bifurcation and Chaos, (2002) 12, 659-661. DOI: https://doi.org/10.1142/S0218127402004620

Chen, G. and Ueta, T. Yet Another Chaotic Attractor. International Journal of Bifurcation and Chaos, (1999) 9, 1465-1466. DOI: https://doi.org/10.1142/S0218127499001024

Pehli̇van İ, Kurt E, Lai̇ Q, Basaran A, Kutlu M. A Multiscroll Chaotic Attractor and its Electronic Circuit Implementation, Chaos Theory and Applications. 2019; 1(1): 29-37.

Méndez-Ramírez, R., Cruz-Hernández, C., Arellano-Delgado, A. and Martínez-Clark, R. A new simple chaotic Lorenz-type system and its digital realization using a TFT touch-screen display embedded system. Complexity, 2017(6820492): 1–13. DOI: https://doi.org/10.1155/2017/6820492

Published

2022-01-30

How to Cite

Rodríguez Cruz, F. A., Chacón Rendón, C. de J., & Rodriguez-Liñan, A. (2022). Electronic Operation of Chaotic Systems: Part 1, Quadratic Analogues. Revista Ingenierías, 25(92), 28–49. https://doi.org/10.29105/ingenierias25.92-55