Estudio comparativo de módulos de rigidez de tres maderas mexicanas y tres maderas japonesas

Autores/as

DOI:

https://doi.org/10.29105/ingenierias27.96-950

Palabras clave:

Contenido de humedad, densidad de la madera, resistencia mecánica, torsión dinámica

Resumen

El objetivo de la investigación fue determinar las densidades y los módulos de rigidez en tres maderas japonesas y tres maderas mexicanas. La unidad experimental consistió en 210 especímenes agrupados en muestras de treinta y cinco probetas de cada una de las seis especies. Se determinaron el contenido de humedad y la densidad, y se midieron las frecuencias naturales de vibración en pruebas de torsión dinámica. Las magnitudes de los módulos de rigidez son comparables con los de investigaciones anteriores. Sin embargo, existen diferencias estadísticamente significativas entre las densidades y los módulos de rigidez de las seis especies.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Javier Ramón Sotomayor Castellanos, Universidad Michoacana de San Nicolás de Hidalgo

Licenciatura en Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, México. Maestría en Ciencias de la Madera, Instituto Politécnico Nacional de Lorena, Francia. Doctorado en Ciencias de la Madera, Universidad Laval, Canadá. Actualmente profesor en la Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, México.

Citas

Wang, Z., Xie, W., Wang, Z., y Cao, Y., “Strain method for synchronous dynamic measurement of elastic, shear modulus and Poisson’s ratio of wood and wood composites”, Construction and Building Materials 182, 608–619 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.139

Hernández, S.A. y Sotomayor, J.R., “Comportamiento elástico de la madera de Acer rubrum y de Abies balsamea”, Madera y Bosques 20(3), 113-123 (2014). DOI: https://doi.org/10.21829/myb.2014.203156

Sotomayor, J.R., “Características dinámicas de 22 maderas determinadas por el método de vibraciones transversales”, Revista Mexicana de Ciencias Forestales 9(48), 1-23 (2018). DOI: https://doi.org/10.29298/rmcf.v8i48.150

Anshari, B., Guan, Z.W., Kitamori, A., Jung, K., Hassel, I., y Komatsu, K., “Mechanical and moisture- dependent swelling properties of compressed Japanese cedar”, Construction and Building Materials 25(4), 1718-1725 (2011). DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.095

Sotomayor, J.R., “Módulos de rigidez dinámicos de siete maderas mexicanas determinados por vibraciones en torsión”, Revista Chapingo Serie Ciencias Forestales y del Ambiente 22(2), 125-134 (2016).

Naruse, K., “Estimation of shear moduli of wood by quasi-simple shear tests”, Journal of Wood Science 49(6), 479-484 (2003). DOI: https://doi.org/10.1007/s10086-003-0515-0

Ozyhar, T., Hering, S., Sanabria, S.J., y Niemz, P., “Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves”, Wood Science and Technology 47(2), 329- 341 (2013). DOI: https://doi.org/10.1007/s00226-012-0499-2

Nadir, Y., Nagarajan, P., y Midhun, A.J., “Measuring elastic constants of Hevea brasiliensis using compression and Iosipescu shear test”, European Journal of Wood and Wood Products 72(6), 749-758 (2014). DOI: https://doi.org/10.1007/s00107-014-0842-4

Sotomayor, J.R., Banco FITECMA de características físico-mecánicas de maderas mexicanas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia (2015).

Komán, S. y Feher, S., “Physical and mechanical properties of Paulownia tomentosa wood planted in Hungaria”, Wood Research 62(2), 335-340 (2017).

Kránitz, K., Deublein, M., y Niemz, P., “Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices”, Materials and Structures 47(6), 925-936 (2014). DOI: https://doi.org/10.1617/s11527-013-0103-8

Yoshihara, H., “Shear modulus and shear strength evaluation of solid wood by a modified ISO 15310 square-plate twist method”, Drvna Industrija 63(1), 51-55 (2012). DOI: https://doi.org/10.5552/drind.2012.1125

Olsson, A. y Källsner, B., “Shear modulus of structural timber evaluated by means of dynamic excitation and FE analysis”, Materials and Structures 48(4), 977-985 (2013). DOI: https://doi.org/10.1617/s11527-013-0208-0

Cha, J.K., “Determination of true modulus of elasticity and modulus of rigidity for domestic woods with different slenderness ratios using nondestructive tests”, Journal of the Korean Wood Science and Technology 43(1), 36-42 (2015). DOI: https://doi.org/10.5658/WOOD.2015.43.1.36

Roohnia, M. y Kohantorabi, M., “Dynamic methods to evaluate the shear modulus of wood”, BioResources 10(3), 4867-4876 (2015). DOI: https://doi.org/10.15376/biores.10.3.4867-4876

Keunecke, D., Sonderegger, W., Pereteanu, K., Lüthi, T., y Niemz, P., “Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves”, Wood Science and Technology 41(4), 309-327 (2007). DOI: https://doi.org/10.1007/s00226-006-0107-4

Sotomayor, J.R. y Villaseñor, J. M., “Módulo de rigidez y módulo dinámico de la madera de Acer saccharum Marshall y Thuja plicata L.”, Revista Forestal Mesoamericana Kurú 13(33), 20-28 (2016). DOI: https://doi.org/10.18845/rfmk.v13i33.2574

International Organization for Standardization. ISO 13061-1:2014. Physical and mechanical properties of wood -- Test methods for small clear wood specimens -- Part 1: Determination of moisture content for physical and mechanical tests. International Organization for Standardization, Geneva (2014).

International Organization for Standardization. ISO 13061-2:2014. Physical and mechanical properties of wood -- Test methods for small clear wood specimens -- Part 2: Determination of density for physical and mechanical tests. International Organization for Standardization, Geneva (2014).

American Society for Testing and Materials (ASTM International). ASTM C1259-15. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration. American Society for Testing and Materials, West Conshohocken (2015).

American Society for Testing and Materials (ASTM International). ASTM E1876-15. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration. American Society for Testing and Materials, West Conshohocken (2015).

Harada, T., “Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test”, Fire and Materials 25(4), 161-167 (2001). DOI: https://doi.org/10.1002/fam.766

Kartal, S.N., Hwang, W., y Imamura, Y., “Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood”, Journal of Materials Processing Technology 198(1), 234-240 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.07.001

Akyildiz, M.H. y Kol, H.S., “Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) Wood”, Journal of Environmental Biology 31(3), 351-555 (2010).

Kaygin, B., Kaplan, D., y Aydemir, D., “Paulownia Tree as an Alternative Raw Material for Pencil Manufacturing”, BioResources 10(2), 3426-3433 (2015). DOI: https://doi.org/10.15376/biores.10.2.3426-3433

Miyoshi, Y., Kojiro, K., y Furuta, Y., “Effects of density and anatomical feature on mechanical properties of various wood species in lateral tension”, Journal of Wood Science 64(5), 509-514 (2018). DOI: https://doi.org/10.1007/s10086-018-1730-z

Silva, J.A., Fuentes, F.J., Rodríguez, R., Torres, P.A., Lomelí, M.A., Ramos, J., Waitkus, C. y Richter, H.G., Fichas de propiedades tecnológicas y usos de maderas nativas de México e importadas, Comisión Nacional Forestal, México (2010).

Tamarit, J.C. y López, J.L., Xilotecnología de los principales árboles tropicales de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, México (2007).

Ehrhart, T. y Brandner, R., “Rolling shear: Test configurations and properties of some European soft- and hardwood species”, Engineering Structures 172, 554-572 (2018). DOI: https://doi.org/10.1016/j.engstruct.2018.05.118

Onoda, Y., Richards, A.E., y Westoby, M., “The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species”, The New Phytologist 185(2), 493- 501 (2010). DOI: https://doi.org/10.1111/j.1469-8137.2009.03088.x

Baar, J., Tippner, J., y Rademacher, P., “Prediction of mechanical properties - modulus of rupture and modulus of elasticity - of five tropical species by nondestructive methods”, Maderas. Ciencia y tecnología 17(2), 239-252 (2015). DOI: https://doi.org/10.4067/S0718-221X2015005000023

Guan, C., Zhang, H., Hunt, J.F., y Yan, H., “Determining shear modulus of thin wood composite materials using a cantilever beam vibration method”, Construction and Building Materials 121, 285-289 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.007

Cavalli, A., Cibecchini, D., Goli, G., y Togni, M., “Shear modulus of old timber”, iForest - Biogeosciences and Forestry 10(2), 446-450 (2017). DOI: https://doi.org/10.3832/ifor1787-009

Fernandes, C., Gaspar, M.J., Pires, J., Alves, A., Simões, R., Rodrigues, J.C., Silva, M.E., Carvalho, A., Brito, J.E., y Lousada, J.L., “Physical,

chemical and mechanical properties of Pinus sylvestris wood at five sites in Portugal”, iForest - Biogeosciences and Forestry 10(4), 669-679 (2017). DOI: https://doi.org/10.3832/ifor2254-010

Hayatgheibi, H., Fries, A., Kroon, J., y Wu, H.X., “Genetic analysis of lodgepole pine (Pinus contorta) solid-wood quality traits”, Canadian Journal of Forest Research 47(10), 1303-1313 (2017). DOI: https://doi.org/10.1139/cjfr-2017-0152

Hofstetter, K., y Gamstedt, K., “Hierarchical modelling of microstructural effects on mechanical properties of wood. A review”, Holzforschung 63(2), 130-138 (2009). DOI: https://doi.org/10.1515/HF.2009.018

Uetimane Jr, E., y Ali, A.C., “Relationship between mechanical properties and selected anatomical features of Ntholo (Pseudolachnostylis maprounaefolia)”, Journal of Tropical Forest Science 23(2), 166- 176 (2011).

Brémaud, I., Gril, J., y Thibaut, B., “Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data”, Wood Science and Technology 45(4), 735-754, (2011). DOI: https://doi.org/10.1007/s00226-010-0393-8

Machado, J.S., Louzada, J.L., Santos, A. J.A., Nunes, L., Anjos, O., Rodrigues, J., Simões, R.M.S., y Pereira, H., “Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.)”, Materials and Design 56, 975-980 (2014). DOI: https://doi.org/10.1016/j.matdes.2013.12.016

Jiang, J., Lu, J., y; Cai, Z., “The vibrational properties of Chinese fir wood during moisture sorption process”, BioResources 7(3), 3585-3596 (2012). DOI: https://doi.org/10.15376/biores.7.3.3585-3596

Sheikh, A.A., y Stergios, A., “Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments”, Applied Acoustics 140, 92-99 (2018). DOI: https://doi.org/10.1016/j.apacoust.2018.05.017

Oberhofnerová, E., Arnetová, K., Holeček, T., Borůvka, V., y Bomba, J., “Determination of correlation between destructive and nondestructive test methods applied on modified wood exposed to natural weathering”, BioResources 11(2), 5155-5168 (2016). DOI: https://doi.org/10.15376/biores.11.2.5155-5168

Pierrejean, I., Mehinto, T., y Beauchene, J., “Comparative analysis of three different methods used to determine the elastic modulus for a choice of tropical Guianese wood species”, Pro Ligno 13(1), 3-17 (2017).

Chauhan, S., y Sethy, A., “Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity”, Maderas. Ciencia y tecnología 18(2), 373- 382 (2016). DOI: https://doi.org/10.4067/S0718-221X2016005000034

Dackermann, U., Elsener, R., Li, J., y Crews, K., “A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood”, Construction and Building Materials 102, 963-976 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.195

Descargas

Publicado

31-01-2024

Cómo citar

Sotomayor Castellanos, J. R. (2024). Estudio comparativo de módulos de rigidez de tres maderas mexicanas y tres maderas japonesas. Ingenierias, 27(96), 39–48. https://doi.org/10.29105/ingenierias27.96-950

Número

Sección

Artículos