Remoción del colorante AV7 presente en solución acuosa mediante carbón activado
DOI:
https://doi.org/10.29105/ingenierias23.89-3Palabras clave:
Adsorción, carbón activado, cinética, remoción de colorante.Resumen
Se investigó la remoción del colorante ácido violeta 7 mediante carbón activado en un sistema de adsorción en lote. Se estudiaron los efectos de parámetros experimentales en la capacidad de adsorción, tales como la masa del adsorbente y el pH. Las mejores condiciones experimentales para la adsorción de ácido violeta 7 fueron a pH natural del colorante (pH 6) y 100 mg de adsorbente al obtener una capacidad de adsorción de 102 mg/g. La cinética de adsorción fue descrita por el modelo de Pseudo-Segundo orden que está basado en un mecanismo de quimisorción.
Descargas
Citas
Chen, L., Huang, K., Zhou, J., Duan, H. F., Zhang, J., Wang, D., & Qiu, H. (2020). Multiple-risk assessment of water supply, hydropower and environment nexus in the water resources system. Journal of Cleaner Production, 268, 122057. https://doi.org/10.1016/j.jclepro.2020.122057. DOI: https://doi.org/10.1016/j.jclepro.2020.122057
Hincapié Mejía, G., Cardona Cuervo, S., & Ríos, L. A. (2018). Absorption thermodynamic study of azoic dye with by means of a lignocellulosic waste in aqueous medium. Ingeniería y Desarrollo, 36(1), 97–118. https://doi. org/10.14482/inde.36.1.10941. DOI: https://doi.org/10.14482/inde.36.1.10941
Ben Mansour, H., Corroler, D., Barillier, D., Ghedira, K., Chekir, L., & Mosrati, R. (2007). Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: Acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food and Chemical Toxicology, 45(9), 1670–1677. https://doi.org/10.1016/j.fct.2007.02.033. DOI: https://doi.org/10.1016/j.fct.2007.02.033
Moutaouakkil,A.,Zeroual,Y.,Dzayri,F.Z.,Talbi,M.,Lee,K.,&Blaghen, M. (2003). Purification and partial characterization of azoreductase from Enterobacter agglomerans. Archives of Biochemistry and Biophysics, 413(1), 139–146. https://doi.org/10.1016/S0003-9861(03)00096-1. DOI: https://doi.org/10.1016/S0003-9861(03)00096-1
González-Casamachin, D. A., Rivera De la Rosa, J., Lucio-Ortiz, C. J., De Haro De Rio, D. A., Martínez-Vargas, D. X., Flores-Escamilla, G. A., Dávila Guzman, N. E., Ovando-Medina, V. M., & Moctezuma-Velazquez, E. (2019). Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: Synthesis, characterization, mass transfer effect evaluation and kinetic analysis. Chemical Engineering Journal, 373(March), 325–337. https://doi.org/10.1016/j.cej.2019.05.032. DOI: https://doi.org/10.1016/j.cej.2019.05.032
Forgacs,E.,Cserháti,T.,&Oros,G.(2004).Removalofsyntheticdyesfrom wastewaters: A review. Environment International, 30(7), 953–971. https://doi. org/10.1016/j.envint.2004.02.001. DOI: https://doi.org/10.1016/j.envint.2004.02.001
Rafatullah,M.,Sulaiman,O.,Hashim,R.,&Ahmad,A.(2010).Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047. DOI: https://doi.org/10.1016/j.jhazmat.2009.12.047
Oladejo, J., Shi, K., Chen, Y., Luo, X., Gang, Y., & Wu, T. (2020). Closing the active carbon cycle: Regeneration of spent activated carbon from a wastewater treatment facility for resource optimization. Chemical Engineering and Processing - Process Intensification, 150(November 2019), 107878. https://doi.org/10.1016/j.cep.2020.107878. DOI: https://doi.org/10.1016/j.cep.2020.107878
Vargas,A.M.M.,Cazetta,A.L.,Martins,A.C.,Moraes,J.C.G.,Garcia,E.E., Gauze, G. F., Costa, W. F., & Almeida, V. C. (2012). Kinetic and equilibrium studies: Adsorption of food dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods. Chemical Engineering Journal, 181–182, 243–250. https://doi.org/10.1016/j.cej.2011.11.073. DOI: https://doi.org/10.1016/j.cej.2011.11.073
Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42(4), 547–553. https://doi.org/10.1016/ j.procbio.2006.10.009. DOI: https://doi.org/10.1016/j.procbio.2006.10.009
Castelar Ortega, G. C., Viloria C, C. A., Morrinson B, C. A., Angulo M, E. R., & Zambrano A, A. M. (2017). Evaluación de un carbón activado comercial en la remoción del colorante DB2. Revista Colombiana de Ciencia Animal - RECIA, 9(2), 164. https://doi.org/10.24188/recia.v9.n2.2017.512. DOI: https://doi.org/10.24188/recia.v9.n2.2017.512