Remoción del colorante AV7 presente en solución acuosa mediante carbón activado
DOI:
https://doi.org/10.29105/ingenierias23.89-3Keywords:
Adsorption, activated carbon, kinetics, dye removalAbstract
The removal of the acid violet dye 7 by activated carbon was investigated in a batch adsorption system. The effects of experimental parameters on the adsorption capacity, such as the mass of the adsorbent and the pH were studied. The best experimental conditions for the adsorption of acid violet 7 were at the natural pH of the dye (pH 6) and 100 mg of adsorbent achieving an adsorption capacity of 102 mg/g. The adsorption kinetics followed the Pseudo-Second order model which is based on a quimisorption mechanism.
Downloads
References
Chen, L., Huang, K., Zhou, J., Duan, H. F., Zhang, J., Wang, D., & Qiu, H. (2020). Multiple-risk assessment of water supply, hydropower and environment nexus in the water resources system. Journal of Cleaner Production, 268, 122057. https://doi.org/10.1016/j.jclepro.2020.122057. DOI: https://doi.org/10.1016/j.jclepro.2020.122057
Hincapié Mejía, G., Cardona Cuervo, S., & Ríos, L. A. (2018). Absorption thermodynamic study of azoic dye with by means of a lignocellulosic waste in aqueous medium. Ingeniería y Desarrollo, 36(1), 97–118. https://doi. org/10.14482/inde.36.1.10941. DOI: https://doi.org/10.14482/inde.36.1.10941
Ben Mansour, H., Corroler, D., Barillier, D., Ghedira, K., Chekir, L., & Mosrati, R. (2007). Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: Acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food and Chemical Toxicology, 45(9), 1670–1677. https://doi.org/10.1016/j.fct.2007.02.033. DOI: https://doi.org/10.1016/j.fct.2007.02.033
Moutaouakkil,A.,Zeroual,Y.,Dzayri,F.Z.,Talbi,M.,Lee,K.,&Blaghen, M. (2003). Purification and partial characterization of azoreductase from Enterobacter agglomerans. Archives of Biochemistry and Biophysics, 413(1), 139–146. https://doi.org/10.1016/S0003-9861(03)00096-1. DOI: https://doi.org/10.1016/S0003-9861(03)00096-1
González-Casamachin, D. A., Rivera De la Rosa, J., Lucio-Ortiz, C. J., De Haro De Rio, D. A., Martínez-Vargas, D. X., Flores-Escamilla, G. A., Dávila Guzman, N. E., Ovando-Medina, V. M., & Moctezuma-Velazquez, E. (2019). Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: Synthesis, characterization, mass transfer effect evaluation and kinetic analysis. Chemical Engineering Journal, 373(March), 325–337. https://doi.org/10.1016/j.cej.2019.05.032. DOI: https://doi.org/10.1016/j.cej.2019.05.032
Forgacs,E.,Cserháti,T.,&Oros,G.(2004).Removalofsyntheticdyesfrom wastewaters: A review. Environment International, 30(7), 953–971. https://doi. org/10.1016/j.envint.2004.02.001. DOI: https://doi.org/10.1016/j.envint.2004.02.001
Rafatullah,M.,Sulaiman,O.,Hashim,R.,&Ahmad,A.(2010).Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047. DOI: https://doi.org/10.1016/j.jhazmat.2009.12.047
Oladejo, J., Shi, K., Chen, Y., Luo, X., Gang, Y., & Wu, T. (2020). Closing the active carbon cycle: Regeneration of spent activated carbon from a wastewater treatment facility for resource optimization. Chemical Engineering and Processing - Process Intensification, 150(November 2019), 107878. https://doi.org/10.1016/j.cep.2020.107878. DOI: https://doi.org/10.1016/j.cep.2020.107878
Vargas,A.M.M.,Cazetta,A.L.,Martins,A.C.,Moraes,J.C.G.,Garcia,E.E., Gauze, G. F., Costa, W. F., & Almeida, V. C. (2012). Kinetic and equilibrium studies: Adsorption of food dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods. Chemical Engineering Journal, 181–182, 243–250. https://doi.org/10.1016/j.cej.2011.11.073. DOI: https://doi.org/10.1016/j.cej.2011.11.073
Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42(4), 547–553. https://doi.org/10.1016/ j.procbio.2006.10.009. DOI: https://doi.org/10.1016/j.procbio.2006.10.009
Castelar Ortega, G. C., Viloria C, C. A., Morrinson B, C. A., Angulo M, E. R., & Zambrano A, A. M. (2017). Evaluación de un carbón activado comercial en la remoción del colorante DB2. Revista Colombiana de Ciencia Animal - RECIA, 9(2), 164. https://doi.org/10.24188/recia.v9.n2.2017.512. DOI: https://doi.org/10.24188/recia.v9.n2.2017.512