Síntesis y caracterización del Mg(BOB)2 como electrolito para baterías recargables de iones de magnesio

Autores/as

DOI:

https://doi.org/10.29105/ingenierias26.95-796

Palabras clave:

Mg(BOB)2, electrolito, deposición/disolución de Mg

Resumen

Se llevó a cabo el proceso de obtención libre de solventes de la sal bis(oxalato)borato de magnesio (Mg(B(C2O4)2)2, Mg(BOB)2), la cual es potencialmente viable para ser utilizada como material electrolítico en baterías recargables de iones de magnesio (RMIB). La síntesis utilizada fue por estado sólido donde en un primer paso se mezcló manual y homogéneamente, dentro de un mortero de ágata, sus tres precursores; ácido oxálico, ácido bórico e hidróxido de magnesio con una relación molar de 4:2:1, respectivamente. Como segundo paso, y debido a que se utilizan compuestos higroscópicos, se evitó la exposición de manera prolongada a la humedad ambiental llevándolos a un secado dentro un horno de vacío a 60 °C durante 1 h continua seguido de un tratamiento térmico de 110 °C por 3 h, para la eliminación del agua residual previo a la temperatura de síntesis de 150 °C. El Mg(BOB)2 sintetizado se caracterizó por difracción de rayos X (DRX) y por microscopía electrónica de barrido (MEB). Los resultados obtenidos mediante espectroscopia infrarroja por transformada de Fourier (FTIR) dentro del rango de número de onda de 4000–400 cm−1 confirmaron la aparición de los grupos funcionales del Mg(BOB)2, identificados por sus bandas características de absorción C=O, C-O-B-O-C, O-B-O y B-O. Además, el polvo del Mg(BOB)2 se utilizó para preparar un electrolito líquido con el solvente tetrahidrofurano (THF) y se evaluó en celdas de tres electrodos así como en medias celdas prototipo, caracterizadas con curvas de voltamperometría cíclica (VC). 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jesús Guzmán Torres, Universidad Autónoma de Nuevo León

Ingeniero Químico egresado de la Universidad Veracruzana (UV). Realizó sus estudios de Maestría y Doctorado en Ciencias con Orientación en Química de los Materiales en la Facultad de Ciencias Químicas (FCQ) de la Universidad Autónoma de Nuevo León (UANL).

Edgar González Juárez, Universidad Autónoma de Nuevo León

Químico egresado de la Universidad Autónoma del Estado de Morelos (UAEM). Realizó sus estudios de Maestría y Doctorado en el Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp) de la UAEM. Es doctor en Ingeniería y Ciencias Aplicadas en el área de los materiales. Actualmente es profesor de la Facultad de Ciencias Químicas de la Universidad Autónoma de Nuevo León (UANL). Es miembro del Sistema Nacional de Investigadores e Investigadoras, Nivel I.

Salome Maribel De la Parra Arciniega, Universidad Autónoma de Nuevo León

Ingeniera Química y Maestra en Química Inorgánica (Cerámica) por la Universidad Nacional Autónoma de México (UNAM). Doctora en Ciencias con especialidad en Ingeniería Cerámica en la Universidad Autónoma de Nuevo León (UANL). Profesora titular a tiempo completo en la Facultad de Ciencias Químicas (FCQ) de la Universidad Autónoma de Nuevo León (UANL). Es miembro del Sistema Nacional de Investigadores e Investigadoras, Nivel I.

Arián Espinosa Roa, Centro de Investigación en Química Aplicada

Licenciado en Química por la Universidad Autónoma del Estado de Hidalgo (UAEH), Centro de Investigaciones Químicas, y Doctor en Química Organometálica por la misma institución. Actualmente es investigador catedrático CONACYT, adscrito al Centro de Investigación en Química Aplicada (CIQA) Unidad Monterrey. Es miembro del Sistema Nacional de Investigadores e Investigadoras, Nivel I.

Eduardo Maximiliano Sánchez Cervantes, Universidad Autónoma de Nuevo León

Licenciado en Ciencias Químicas por el Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) y Doctor en Ciencias Químicas con acentuación en química del Estado Sólido por la Universidad Estatal de Arizona (ASU). Actualmente es profesor de tiempo completo en la Facultad de Ciencias Químicas (FCQ) de la Universidad Autónoma de Nuevo León (UANL). Es miembro de la Academia Mexicana de Ciencias y del Sistema Nacional de Investigadores e Investigadoras, Nivel III.

Citas

Yeru Liang, Chen-Zi Zhao, Hong Yuan, Yuan Chen, Weicai Zhang, Jia-Qi Huang, Dingshan Yu, Yingliang Liu, Maria-Magdalena Titirici, Yu-Lun Chueh, Haijun Yu and Qiang Zhang. A review of rechargeable batteries for portable electronic devices, InfoMat, 2019, 1, 6-32. https://doi.org/10.1002/inf2.12000

Dolf Gielen, Francisco Boshell, Deger Saygin, Morgan D. Bazilian, Nicholas Wagner and Ricardo Gorini. The role of renewable energy in the global energy transformation, Energy Strategy Reviews, 2019, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006

John B. Goodenough. How we made the Li-ion rechargeable battery Nature Electronics, 2018, 1, 204. https://doi.org/10.1038/s41928-018-0048-6

Alagar Ramar and Fu-Ming Wang. Advances in polymer electrode materials for alkali metals (lithium, sodium and potassium)-ion rechargeable batteries, Journal of Materials Science: Materials in Electronics, 2020, 31, 21832-21855. https://doi.org/10.1007/s10854-020-04805-6

Aruto Watanabe, Kentaro Yamamoto, Yuki Orikasa, Titus Masese, Takuya Mori, Tomoki Uchiyama, Toshiyuki Matsunaga and Yoshiharu Uchimoto. Reaction mechanism of electrochemical insertion/extraction of magnesium ions in olivine-type FePO4, Solid State Ionics, 2020, 349, 115311. https://doi.org/10.1016/j.ssi.2020.115311

Xin Lei, Yongping Zheng, Fan Zhang, Yong Wang and Yongbing Tang. Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material, Energy Storage Materials, 2020, 30, 34-41. https://doi.org/10.1016/j.ensm.2020.04.025

Zhonghua Zhang, Shamu Dong, Zili Cui, Aobing Du, Guicun Li and Guanglei Cui. Rechargeable Magnesium Batteries using Conversion-Type Cathodes: A Perspective and Minireview, Small Methods, 2018, 2, 1800020. https://doi.org/10.1002/smtd.201800020

Tobias Placke, Richard Kloepsch, Simon Dühnen and Martin Winter. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density, Journal of Solid State Electrochem, 2017, 21, 1939-1964. https://doi.org/10.1007/s10008-017-3610-7

Ran Attias, Michael Salama, Baruch Hirsch, Yosef Goffer and Doron Aurbach. Anode-Electrolyte Interfaces in Secondary Magnesium Batteries, Journal Joule, 2019, 3, 27-52. https://doi.org/10.1016/j.joule.2018.10.028

Ramasubramonian Deivanayagam, Brian J. Ingram and Reza Shahbazian-Yassar. Progress in development of electrolytes for magnesium batteries, Energy Storage Materials, 2019, 21, 136-153. https://doi.org/10.1016/j.ensm.2019.05.028

Robert Dominko, Jan Bitenc, Romain Berthelot, Magali Gauthierf, GioelePagot and Vito Di Noto. Magnesium batteries: Current picture and missing pieces of the puzzle, Journal of Power Sources, 2020, 478, 229027. https://doi.org/10.1016/j.jpowsour.2020.229027

Muhammad Rashad, Muhammad Asif, Yuxin Wang, He Zhen and Iftikhar Ahmed. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries, Energy Storage Materials, 2020, 25, 342-375. https://doi.org/10.1016/j.ensm.2019.10.004

Zhonghua Zhang, Zili Cui, Lixin Qiao, Jing Guan, Huimin Xu, Xiaogang Wang, Pu Hu, Huiping Du, Shizhen Li, Xinhong Zhou, Shanmu Dong, Zhihong Liu, Guanglei Cui and Liquan Chen. Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium–Selenium and Magnesium–Sulfur Batteries, Advanced Energy Materials, 2017, 7, 1602055. https://doi.org/10.1002/aenm.201602055

A. Le Baila. Monte Carlo indexing with McMaille, Powder Diffraction, 2004, 19, 249-254. https://doi.org/10.1154/1.1763152

Kai He, Nuofu Chen, Congjie Wang, Lishuai Wei and Jikun Chen. Method for Determining Crystal Grain Size by X-Ray Diffraction, Crystal Research and Technology, 2018, 53, 1700157. https://doi.org/10.1002/crat.201700157

Etty Marti Wigayati, Christin Rina Ratri, Ibrahim Purawiardi, Fadli Rohman and Titik Lestariningsih. Microstructure Analysis of Synthesized LiBOB, Indonesian Journal of Chemistry, 2015, 15, 242-247. https://doi.org/10.22146/ijc.21191

Chunhua Ge, Lixia Wang, Lili Xue, Zhong-Shuai Wu, Hehe Li, Zailin Gong and Xiang-Dong Zhang. Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries, Journal of Power Sources, 2014, 248, 77-82. https://doi.org/10.1016/j.jpowsour.2013.09.044

Lixia Wang, Weifang Han, Chunhua Ge, Rui Zhang, Yufeng Bai and Xiangdong Zhang. Functionalized Carboxyl Carbon/NaBOB Composite as Highly Conductive Electrolyte for Sodium Ion Batteries, Chemistry Select, 2018, 3, 9293-9300. https://doi.org/10.1002/slct.201801954

Titik Lestariningsih, Christin Rina Ratri, Etty Marty Wigayati and Qolby Sabrina. Characterization of pore and crystal structure of synthesized LiBOB with varying quality of raw materials as electrolyte for lithium-ion battery, AIP Conference Proceedings, 2016, 1711, 060005. https://doi.org/10.1063/1.4941638

Etty Marti Wigayati, Titik Lestariningsih, Achmad Subhan, Christin Rina Ratri and Ibrahim Purawiardi. Synthesis and characterization of LiBOB as electrolyte for lithium-ion battery, Ionics, 2016, 22, 43-50. https://doi.org/10.1007/s11581-015-1531-y

Etty Marti Wigayati, Titik Lestariningsih, Christin Rina Ratri, Ibrahim Purawiardi and Bambang Prihandoko. Synthesis of LiBOB Fine Powder to Increase Solubility, Makara Journal of Technology, 2017, 21, 26-32. https://doi.org/10.7454/mst.v21i1.3076

Ceren Zora, Yaprak Subası̧, Durata Haciub, Mehmet Somer and Semih Afyon. Guide to Water Free Lithium Bis(oxalate) Borate (LiBOB), Journal of Physical Chemistry C, 2021, 125, 11310-11317. https://doi.org/10.1021/acs.jpcc.1c01437

Fangyuan Cheng, Xiaoyu Zhang, Yuegang Qiu, Jinxu Zhang, Yi Liu, Peng Wei, Mingyang Ou, Shixiong Sun, Yue Xu, Qing Li, Chun Fang, Jiantao Han and Yunhui Huang. Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries, Nano Energy, 2021, 88, 106301. https://doi.org/10.1016/j.nanoen.2021.106301

Alexander A. Kamnev, Anna V. Tugarova, Yulia A. Dyatlova, Petros A. Tarantilis, Olga P. Grigoryeva, Alexander M. Fainleib and Stefania De Luca. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular simples, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 558-564. https://doi.org/10.1016/j.saa.2017.12.051

E. F. Medvedev and A. Sh. Komarevskaya. IR spectroscopic study of the phase composition of boric acid as a component of glass batch, Glass and Ceramics, 2007, 64, 42-46. https://doi.org/10.1007/s10717-007-0010-y

Kazuo Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, John Wiley and Sons, New York, 1997, Sixth Edition, 152-154.

Akiko Tsurumaki, Mario Branchi, Alessio Rigano, Ruggero Poiana, Stefania Panero and Maria Assunta Navarra. Bis(oxalato)borate and difluoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries, Electrochimica Acta, 2019, 315, 17-23. https://doi.org/10.1016/j.electacta.2019.04.190

T. Lestariningsih, Q. Sabrina, I. Nuroniah, B. Prihandoko, E. Marti Wigayati and C. Rina Ratri. Study the synthesis of LiBOB compounds using lithium sources from sea wáter, Journal of Physics: Conference Series, 2019, 1282, 012044. https://doi.org/10.1088/1742-6596/1282/1/012044

Li Shiyou, Li Wenbo, Cui Xiaoling, Li Chunlei, Han Yamin, Yang Li, Wang Peng, Wang Jie and Wei Yuan. A kind of synthetic method and application of magnesium bis-oxalate borate, State Intellectual Property Office of the People's Republic of China, 2019, Patent number: CN 110305151 A.

John Muldoon, Claudiu B. Bucur, Allen G. Oliver, Tsuyoshi Sugimoto, Masaki Matsui, Hee Soo Kim, Gary D. Allred, Jaroslav Zajicekb and Yukinari Kotani. Electrolyte roadblocks to a magnesium rechargeable battery, Energy & Environmental Science, 2012, 5, 5941-5950. https://doi.org/10.1039/C2EE03029B

Long Kong, Chong Yan, Jia-Qi Huang, Meng-Qiang Zhao, Maria-Magdalena Titirici, Rong Xiang and Qiang Zhang. A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries, Energy & Environmental Materials, 2018, 1, 100-112. https://doi.org/10.1002/eem2.12012

Partha Saha, Moni Kanchan Datta, Oleg I. Velikokhatnyi, Ayyakkannu Manivannan, David Alman and Prashant N. Kumta. Rechargeable magnesium battery: Current status and key challenges for the future, Progress in Materials Science, 2014, 66, 1-86. https://doi.org/10.1016/j.pmatsci.2014.04.001

Rana Mohtadi and Fuminori Mizuno. Magnesium batteries: Current state of the art, issues and future perspectives, Beilstein Journal of Nanotechnology, 2014, 5, 1291-1311. https://doi.org/10.3762/bjnano.5.143

Zheng Ma, Douglas R. MacFarlane and Mega Kar. Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review, Batteries & Supercaps, 2019, 2, 115-127. https://doi.org/10.1002/batt.201800102

Zhirong Zhao-Karger and Maximilian Fichtner. Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective, Frontiers in Chemistry, 2019, 6, 656. https://doi.org/10.3389/fchem.2018.00656

Honglei Shuai, Jing Xu and Kejing Huang. Progress in retrospect of electrolytes for secondary magnesium batteries, Coordination Chemistry Reviews, 2020, 422, 213478. https://doi.org/10.1016/j.ccr.2020.213478

Alexander Chernyaev, Jere Partinen, Lassi Klemettinen, Benjamin P. Wilson, Ari Jokilaakso and Mari Lundstrom. The efficiency of scrap Cu and Al current collector materials as reductants in LIB waste leaching, Hydrometallurgy, 2021, 203, 105608. https://doi.org/10.1016/j.hydromet.2021.105608

Yehia Youssef, Walaa El Bestawy, Mootaz Ghazy, Mohamed Shehadeh and Ibrahim Hassan. Investigation of the Corrosion Behaviour of Welded Area of Austenitic Stainless Steels under Stress, International Journal of Chemical Engineering and Applications, 2018, 9, 135-138. https://doi.org/10.18178/ijcea.2018.9.4.713

Yufei Zhang, Hongbo Geng, Weifeng Wei, Jianming Ma, Libao Chen and Cheng Chao Li. Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries, Energy Storage Materials, 2018, 20, 118-138. https://doi.org/10.1016/j.ensm.2018.11.033

Descargas

Publicado

21-07-2023

Cómo citar

Guzmán Torres, J., González Juárez, E., De la Parra Arciniega, S. M., Espinosa Roa, A., & Sánchez Cervantes, E. M. (2023). Síntesis y caracterización del Mg(BOB)2 como electrolito para baterías recargables de iones de magnesio . Ingenierias, 26(95), 3–16. https://doi.org/10.29105/ingenierias26.95-796