Síntesis verde y evaluación fotocatalítica del composite TiO2-GO

Autores/as

  • Carlos Alberto Guerrero Salazar Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-4168-490X
  • Noé Cuauhtémoc Gaspar Villaseñor Universidad Autónoma de Nuevo León
  • Virgilio Ángel González González Universidad Autónoma de Nuevo León
  • Tania Elizabeth Guerrero Salas Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/ingenierias27.97-955

Palabras clave:

Composite TiO2-GO, Azadirachta Indica, óxido de grafeno, Fotocatálisis, Rodamina B

Resumen

Se oxidaron hojuelas de grafito siguiendo el método de Hummer’s; mediante exfoliación por ultrasonido, se obtuvo óxido de grafeno, GO. El extracto en solución acuosa de hojas secas y pulverizadas de Neem (Azadirachta indica) se mezcló con el GO. Se prepararon soluciones acuosas de Isopropóxido de Titanio, las cuales se mezclaron con la solución previamente preparada del GO y el extracto de neem, obteniéndose el TiO2-GO. Variando el porcentaje de GO, se estudió la actividad fotocatalítica del composite, degradando Rodamina B, RhB. El tiempo de vida media de la RhB, calculado según el modelo de Langmuir-Hinshelwood, fue de 30 min.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Carlos Alberto Guerrero Salazar, Universidad Autónoma de Nuevo León

Catedrático del Programa de Posgrado en Ingeniería de Materiales y en Nanotecnología de la Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León. Cuenta con el Perfil Deseable PRODEP y miembro de la Academia Mexicana de Ciencias.

Noé Cuauhtémoc Gaspar Villaseñor, Universidad Autónoma de Nuevo León

Químico Industrial de la Facultad de Ciencias Químicas (2015) y la Maestro en Ciencias de la Ingeniería con especialidad en Materiales de la Facultad de Ingeniería de Mecánica y Eléctrica (2019) de la Universidad Autónoma de Nuevo León. Es estudiante del Doctorado en Ingeniería de Materiales de la misma universidad.

Virgilio Ángel González González, Universidad Autónoma de Nuevo León

Catedrático del Programa de Posgrado en Ingeniería de Materiales y en Nanotecnología de la Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León. Cuenta con el Perfil Deseable PRODEP, es miembro del Sistema Nacional de Investigadores (Nivel II), de la Academia Mexicana de Ciencias,  y de la Academia de Ingeniería.

Tania Elizabeth Guerrero Salas, Universidad Autónoma de Nuevo León

Estudiante del Doctorado en Ingeniería de Materiales de Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León. Cuenta con estancias de investigación en la École Polytechnique de Montreal, Canadá y en l’Organisation Européenne pour la Recherche Nucléaire, CERN, Ginebra, Suiza.

Citas

Lin L, Yang H and Xu X (2022) Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 10:880246. doi: 10.3389/fenvs.2022.880246.

United Nations, The United Nations World Water Development Report 2021: Valuing Water. UNESCO (2021) Paris.

Ismail Muhammad et al, Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation, Current Pharmaceutical Design, Volume 25, Number 34, 2019, pp. 3645-3663(19). https://doi.org/10.2174/1381612825666191021142026.

Aklilu Azanaw, Bantamlak Birlie, Bayu Teshome, Muluken Jemberie, Textile effluent treatment methods and eco-friendly resolution of textile wastewater, Case Studies in Chemical and Environmental Engineering, Volume 6, 2022,100230. https://doi.org/10.1016/j.cscee.2022.100230

Zainab Mohammad Saigl, Various Adsorbents for Removal of Rhodamine B Dye: A Review, Indones. J. Chem., 2021, 21 (4), 1039 – 1056. https://doi.org/10.22146/ijc.62863.

Swetha Saravanan, Femina Carolin C, P. Senthil Kumar, B. Chitra, Gayathri Rangasamy, Biodegradation of textile dye Rhodamine-B by Brevundimonas diminuta and screening of their breakdown metabolites, Chemosphere, Volume 308, Part 1, 2022. https://doi.org/10.1016/j.chemosphere.2022.136266.

Giraldo L., Mejía Edwin., and Arango J., La fotocatálisis como alternativa para el tratamiento de aguas residuales, Lasallista de investigación Vol. 1, 2015, 83-91.

Kavya Bisaria, Surbhi Sinha, Rachana Singh, Hafiz M.N. Iqbal, Recent advances in structural modifications of photo-catalysts for organic pollutants degradation – A comprehensive review, Chemosphere, Volume 284, 2021,131263, https://doi.org/10.1016/j.chemosphere.2021.131263.

T. Velempini, et al, Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review, Materials Today Chemistry, Volume 19, 2021, https://doi.org/10.1016/j.mtchem.2020.100380.

Djurišić, A.B., Y.H. Leung, and A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 2014. 1(4): p. 400-410.

Gerardo Flores; Incremento en la actividad fotocatalítica de nanopartículas de ZnS mediante la incorporación de rGO por química verde; MSc Thesis, Universidad Autónoma de Nuevo León, México, 2019.

Noé Gaspar; Síntesis verde, caracterización y evaluación de la actividad fotocatalítica de los composites ZnO-GO y TiO2-GO; MSc Thesis, Universidad Autónoma de Nuevo León, México, 2020.

Zhang, Y., et al., Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS nano, 2012. 6(11): p. 9777-9789. https://doi.org/10.1021/nn304154s.

Nidhi Verma, Tejpal S. Chundawat, Harish Chandra, Dipti Vaya, An efficient time reductive photocatalytic degradation of carcinogenic dyes by TiO2-GO nanocomposite, Materials Research Bulletin, Volume 158, 2023.

https://doi.org/10.1016/j.materresbull.2022.112043.

María C. Nevárez-Martínez et al; Fotocatálisis: inicio, actualidad y perspectivas a través del TiO2; Avances en Química, vol. 12, núm. 2-3, pp. 45-59, 2017.

Kumaran, V., P, S., Konga, A. K., Ponniah, G. (2020). Photocatalytic Degradation of Synthetic Organic Reactive Dye Wastewater Using GO-TiO2 Nanocomposite. Polish Journal of Environmental Studies, 29(2), 1683-1690. https://doi.org/10.15244/pjoes/109027.

Daniela C. Marcano et al, Improved Synthesis of Graphene Oxide, ACS Nano, Vol.4, No 8, 2010, pp 4806-4814. https://doi.org/ 10.1021/nn1006368.

Nadeem Baig, Irshad Kammakakam, Wail Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2021, 2, 1821-1871. https://doi.org/10.1039/D0MA00807A.

Abdelrahman Brakat, Hongwei Zhu; Nanocellulose ‑ Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform; Nano-Micro Lett. (2021) 13:94.

Tseng I., Sung Yu., Chang P., and Wei S., Photocatalytic Performance of Titania Nanosheets Templated by Graphene Oxide, Journal of Photochemistry and Photobiology A: Chemistry, 2017, Vol. 339, pp 1-11. http://doi.org/ 10.1016/j.jphotochem.2017.01.036.

Shraban Kumar Sahoo et al; Biological synthesis of GO-MgO nanomaterial using Azadirachta indica leaf extract: A potential bio-adsorbent for removing Cr(VI) ions from aqueous media; Biochemical Engineering Journal, Vol. 177 (2022) 108272.

G Surekha et al, 2020, FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method, J. Phys.: Conf. Ser. 1495 01201. https://doi.org/10.1088/1742-6596/1495/1/012012.

Çiplak, Zafer, Karabudak Yildiz, Nuray, Çalimli, Ayla. (2014). Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fullerenes, Nanotubes and Carbon Nanostructures. 23. 361-370.

https://doi.org/10.1080/1536383X.2014.894025.

Jagpreet Singh et al; Facile Synthesis of High Lateral Graphene Oxide Sheets for Visible Light-driven Photocatalytic Degradation of Industrial Dyes towards water treatment applications; (2020) doi:10.21203/rs.3.rs-127571/v1.

Leila Shahriary, Anjali A. Athawale, Graphene Oxide Synthesized by using Modified Hummers Approach, International Journal of Renewable Energy and Environmental Engineering, Vol. 02, No. 01, 2014, pp 58-63.

D. K. Calvo Ramos et al., Obtaining and Characterization of TiO2-GO Composites for Photocatalytic Applications, International Journal of Photoenergy, vol. 2020, Article ID 3489218, 9 pages, 2020. https://doi.org/10.1155/2020/3489218.

Mahima Sharma, Kannikka Behl, Subhasha Nigam, Monika Joshi, TiO2-GO nanocomposite for photocatalysis and environmental applications: A green synthesis approach, Vacuum, Vol. 156, 2018, pp 434-439, https://doi.org/10.1016/j.vacuum.2018.08.009.

S Setiawan et al., Microwave-Assisted Synthesis of TiO2GO Composite and Its Adsorption-Photocatalysis Property under Visible Light, 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1143 012055. DOI 10.1088/1757-899X/1143/1/012055.

Habibi Jetani, G., Rahmani, M.B. TiO2/GO nanocomposites: synthesis, characterization, and DSSC application. Eur. Phys. J. Plus 135, 720 (2020). https://doi.org/10.1140/epjp/s13360-020-00739-4.

Weihang Li, Bojun Song, Shirui Zhang, Fan Zhang, Chang Liu, Nan Zhang, Huiling Yao and Yuanchang Shi; Using 3-Isocyanatopropyltrimethoxysilane to Decorate Graphene Oxide with Nano-Titanium Dioxide for Enhancing the Anti-Corrosion Properties of Epoxy Coating; Polymers 2020, 12, 837; doi:10.3390/polym12040837.

Ibañez, J.G., O. Solorza, and E. Gomez-del-Campo, Preparation of semiconducting materials in the laboratory: Production of CdS thin films and estimation of their band gap energy, Journal of Chemical Education, 1991. 68(10): p. 872.

Timoumi, A. (2018) Reduction Band Gap Energy of TiO2 Assembled with Graphene Oxide Nanosheets. Graphene, 7, 31-38. https://doi.org/10.4236/graphene.2018.74004.

Štengl et al.: TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chemistry Central Journal, 2013, 7:41. doi:10.1186/1752-153X-7-41.

Descargas

Publicado

25-07-2024

Cómo citar

Guerrero Salazar, C. A., Gaspar Villaseñor, N. C., González González, V. Ángel, & Guerrero Salas, T. E. (2024). Síntesis verde y evaluación fotocatalítica del composite TiO2-GO. Ingenierias, 27(97), 3–16. https://doi.org/10.29105/ingenierias27.97-955

Número

Sección

Artículos