Remoción del contaminante Bisfenol A en fase acuosa utilizando Bi2WO6 como fotocatalizador

Autores/as

DOI:

https://doi.org/10.29105/ingenierias28.98-963

Palabras clave:

Bi2WO6, fotocatálisis, contaminantes endocrinos, bisfenol A

Resumen

Los fotocatalizadores a base de bismuto han demostrado un excelente desempeño en procesos de oxidación avanzada para aplicaciones de remediación ambiental. En este trabajo se evalua el efecto del tratamiento térmico durante la síntesis solvtermal de Bi2WO6 en sus propiedades fotocatalíticas para la remoción de bisfenol A en fase acuosa. Los resultados muestran que un tratamiento térmico a 400°C trae consigo un aumento en la cristalinidad de Bi2WO6, impactando en factores que contribuyen a alcanzar hasta un 90% de degradación de la molécula de bisfenol A en medio acuoso.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Magaly Yajaira Nava Núñez, Universidad Autónoma de Nuevo León

Es profesora de tiempo completo en la Universidad Tecnológica Mariano Escobedo, pertenece al SNII Nivel Candidato. Sus áreas de interés son el desarrollo de materiales de construcción con propiedades fotocatalíticas. Obtuvo el Premio de investigación en el área de Ingeniería y Tecnología en el año 2021.

Paulina Rachel Soto Álvarez, Universidad Áutonoma de Nuevo León

Es ingeniera en Materiales recién egresada de la UANL  con una destacada inclinación hacia la innovación en el desarrollo de materiales cerámicos. Actualmente se desempeña en el sector privado como ingeniera de procesos.

Azael Martínez de la Cruz, Universidad Autónoma de Nuevo León

Es investigador de la UANL, pertenece al SNI Nivel III. Su línea de investigación se enfoca en el estudio de semiconductores con aplicación en el tratamiento de agua y purificación de aire. Cuenta con 8 premios de investigación en el área de Ingeniería y Tecnología.

Citas

1. “Conagua, Semarnat. Estadísticas del agua en México . Ediciones 2007”.

2. “PLAN HÍDRICO NUEVO LÉON 2050.”

3. A. Abera Mitiku, “Water Pollution: Causes and Prevention.” [Online]. Available: https://www.researchgate.net/publication/344591948.

4. Zhu, Z., & Zuo, Y., “Bisphenol A and other alkylphenols in the environment - occurrence, fate, health effects and analytical techniques”. Advances in Environmental Research, (2013), 2(3), 179–202. https://doi.org/10.12989/aer.2013.2.3.179. DOI: https://doi.org/10.12989/aer.2013.2.3.179

5. Ohore, O. E., & Songhe, Z., “Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review”. Scientific African, (2019), 5, 1–12. https://doi.org/10.1016/j.sciaf.2019.e00135. DOI: https://doi.org/10.1016/j.sciaf.2019.e00135

6. Genuis, S. J., Beesoon, S., Birkholz, D., & Lobo, R. A., “Human excretion of bisphenol A: Blood, urine, and sweat (BUS) study”. Journal of Environmental and Public Health, (2012), 2012, 1–10. https://doi.org/10.1155/2012/185731. DOI: https://doi.org/10.1155/2012/185731

7. Arnold, S. M., Clark, K. E., Staples, C. A., Klecka, G. M., Dimond, S. S., Caspers, N., & Hentges, S. G., “Relevance of drinking water as a source of human exposure to bisphenol A”. Journal of Exposure Science and Environmental Epidemiology, (2013), 23(2), 137–144. https://doi.org/10.1038/jes.2012.66. DOI: https://doi.org/10.1038/jes.2012.66

8. Gibson, R., Durán-Álvarez, J. C., Estrada, K. L., Chávez, A., & Jiménez Cisneros, B., “Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico”. Chemosphere, (2010), 81(11), 1437–1445. https://doi.org/10.1016/j.chemosphere.2010.09.006. DOI: https://doi.org/10.1016/j.chemosphere.2010.09.006

9. Gong, J., Huang, Y., Huang, W., Ran, Y., & Chen, D., “Multiphase partitioning and risk assessment of endocrine-disrupting chemicals in the Pearl River, China”. Environmental Toxicology and Chemistry, (2016), 35(10), 2474–2482. https://doi.org/10.1002/etc.3419. DOI: https://doi.org/10.1002/etc.3419

10. Boyd, G. R., Palmeri, J. M., Zhang, S., & Grimm, D. A., “Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA”. Science of the Total Environment, (2004), 333(1–3), 137–148. https://doi.org/10.1016/j.scitotenv.2004.03.018. DOI: https://doi.org/10.1016/j.scitotenv.2004.03.018

11. Cruz-López, A., Dávila-Pórcel, R. A., de León-Gómez, H., Rodríguez-Martínez, J. M., Suárez-Vázquez, S. I., Cardona-Benavides, A., Castro-Larragoitia, G. J., Boreselli, L., de Lourdes Villalba, M., Pinales-Munguía, A., Silva-Hidalgo, H., de la Garza, R., & del Socorro Espino-Valdes, M., “Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico”. Environmental Monitoring and Assessment, (2020), 192(8). https://doi.org/10.1007/s10661-020-08446-4. DOI: https://doi.org/10.1007/s10661-020-08446-4

12. Han, C., & Hong, Y. C., “Bisphenol A, Hypertension, and Cardiovascular Diseases: Epidemiological, Laboratory, and Clinical Trial Evidence”. Current Hypertension Reports, (2016), 18, 2, 1–5. https://doi.org/10.1007/s11906-015-0617-2. DOI: https://doi.org/10.1007/s11906-015-0617-2

13. Shekoohiyan, S., Rahmania, A., Chamack, M., Moussavi, G., Rahmanian, O., Alipour, V., & Giannakis, S., “A novel CuO/Fe2O3/ZnO composite for visible-light assisted photocatalytic oxidation of Bisphenol A: Kinetics, degradation pathways, and toxicity elimination”. Separation and Purification Technology, (2020), 242. 1–17. https://doi.org/10.1016/j.seppur.2020.116821 DOI: https://doi.org/10.1016/j.seppur.2020.116821

14. Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C., “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane”. Environmental Science and Pollution Research, (2020), 27(3), 2522–2565. https://doi.org/10.1007/s11356-019-07193-5. DOI: https://doi.org/10.1007/s11356-019-07193-5

15. Hunge, Y. M., Yadav, A. A., Khan, S., Takagi, K., Suzuki, N., Teshima, K., Terashima, C., & Fujishima, A., “Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination”. Journal of Colloid and Interface Science, (2021), 582 Parte B, 1058–1066. https://doi.org/10.1016/j.jcis.2020.08.102. DOI: https://doi.org/10.1016/j.jcis.2020.08.102

16. Zhu, Z., Wan, S., Zhao, Y., Qin, Y., Ge, X., Zhong, Q., & Bu, Y., “Recent progress in Bi2WO6‐Based photocatalysts for clean energy and environmental remediation: Competitiveness, challenges, and future perspectives”. Nano Select, (2021), 2(2), 187–215. https://doi.org/10.1002/nano.202000127. DOI: https://doi.org/10.1002/nano.202000127

17. Kominami, H., Murakami, S. Y., Kato, J. I., Kera, Y., & Ohtani, B., “Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems”. Journal of Physical Chemistry B, (2002), 106(40), 10501–10507. https://doi.org/10.1021/jp0147224. DOI: https://doi.org/10.1021/jp0147224

18. Nagyné-Kovács, T., Shahnazarova, G., Lukács, I. E., Szabó, A., Hernadi, K., Igricz, T., László, K., Szilágyi, I. M., & Pokol, G., “Effect of pH in the hydrothermal preparation of Bi2WO6 nanostructures”. Materials, (2019), 12, 1728, 1–13. https://doi.org/10.3390/ma12111728. DOI: https://doi.org/10.3390/ma12111728

19. Zhang, K., Wang, J., Jiang, W., Yao, W., Yang, H., & Zhu, Y., “Self-assembled Perylene Diimide Based Supramolecular Heterojunction with Bi2WO6 for Efficient Visible-Light-Driven Photocatalysis”. Applied Catalysis B: Environmental, (2018). 232, 175–181. doi:10.1016/j.apcatb.2018.03.059. DOI: https://doi.org/10.1016/j.apcatb.2018.03.059

20. Wang, B., Yang, H., Xian, T., Di, L. J., Li, R. S., & Wang, X. X., “Synthesis of Spherical Bi2WO6 Nanoparticles by a Hydrothermal Route and Their Photocatalytic Properties”. Journal of Nanomaterials, (2015), 2015, 1–7. https://doi.org/10.1155/2015/146327. DOI: https://doi.org/10.1155/2015/146327

21. Waehayee, A., Pongsawakul, C., Ngoipala, A., Phonsuksawang, P., Jiamprasertboon, A., Wannapaiboon, S., Nakajima, H., Butburee, T., Suthirakun, S., & Siritanon, T., “Promoting superoxide generation in Bi2WO6 by less electronegative substitution for enhanced photocatalytic performance: an example of Te doping”. Catalysis Science and Technology, (2021), 11(18), 6291–6304. https://doi.org/10.1039/d1cy00739d. DOI: https://doi.org/10.1039/D1CY00739D

22. Wang, C., Zhang, H., Li, F., & Zhu, L., “Degradation and mineralization of bisphenol a by mesoporous Bi2WO6 under simulated solar light irradiation”. Environmental Science and Technology, (2010), 44(17), 6843–6848. https://doi.org/10.1021/es101890w. DOI: https://doi.org/10.1021/es101890w

23. Chu, Y., Miao, B., Zheng, X., & Su, H., “Fabrication of flower-globular Bi2WO6/BiOI@Ag3PO4 photocatalyst for the degradation of bisphenol A and cefepime under sunlight: Photoelectric properties, degradation performance, mechanism and biodegradability enhancement”. Separation and Purification Technology, (2021), 272, 1–16. https://doi.org/10.1016/j.seppur.2021.118866. DOI: https://doi.org/10.1016/j.seppur.2021.118866

24. Mengting, Z., Kurniawan, T. A., Yanping, Y., Avtar, R., & Othman, M. H. D., “2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation”. Materials Science and Engineering C, (2020), 108,1–32. https://doi.org/10.1016/j.msec.2019.110420. DOI: https://doi.org/10.1016/j.msec.2019.110420

25. Peng, L., Zhang, R., Lei, Q., Luo, J., & Wang, P., “A comparison study of the Bi2WO6 based composite photocatalysts for the degradation of bisphenol A (BPA) under visible-light irradiation”. International Journal of Environmental Analytical Chemistry, (2023), 103(11), 2464–2479. https://doi.org/10.1080/03067319.2021.1893710. DOI: https://doi.org/10.1080/03067319.2021.1893710

Descargas

Publicado

31-01-2025

Cómo citar

Nava Núñez, M. Y., Soto Álvarez, P. R., & Martínez de la Cruz, A. (2025). Remoción del contaminante Bisfenol A en fase acuosa utilizando Bi2WO6 como fotocatalizador. Ingenierias, 28(98), 3–14. https://doi.org/10.29105/ingenierias28.98-963

Número

Sección

Artículos