Removal of the contaminant Bisphenol A in the aqueous phase using Bi2WO6 as a photocatalyst

Authors

DOI:

https://doi.org/10.29105/ingenierias28.98-963

Keywords:

Bi2WO6, photocatalysis, endocrine pollutants, bisphenol A

Abstract

Bismut-based photocatalytic materials have demonstrated excellent performance in photocatalytic processes in environmental remediation applications. This paper presents the effect of thermal treatment on samples of Bi2WO6 obtained by solvothermal synthesis. The results show that after thermal treatment at 400°C, the crystallinity of Bi2WO6 was increased which can be related to an enhancement in the photocatalytic activity of the material, reaching values of 90% of degradation of bisphenol A in aqueous media.

Downloads

Download data is not yet available.

Author Biographies

Magaly Yajaira Nava Núñez, Universidad Autónoma de Nuevo León

Full-time professor at the Universidad Tecnólgica Mariano Escobedo, she belongs to the SNII (Mexican Researcher System) at Candidate Level. Her areas of interest are the development of construction materials with photocatalytic properties. She earned the Research Award in the area of ​​Engineering and Technology in 2021.

Paulina Rachel Soto Álvarez, Universidad Áutonoma de Nuevo León

Materials Engineer just graduated from UANL with a notable inclination towards innovation in the development of ceramic materials. She currently works in the private sector as a process engineer.

Azael Martínez de la Cruz, Universidad Autónoma de Nuevo León

He is a researcher at the UANL, he belongs to the SNI Level III. His line of research focuses on the study of semiconductors with applications in water treatment and air purification. He has been awarded 8 times in the area of ​​Engineering and Technology.

References

1. “Conagua, Semarnat. Estadísticas del agua en México . Ediciones 2007”.

2. “PLAN HÍDRICO NUEVO LÉON 2050.”

3. A. Abera Mitiku, “Water Pollution: Causes and Prevention.” [Online]. Available: https://www.researchgate.net/publication/344591948.

4. Zhu, Z., & Zuo, Y., “Bisphenol A and other alkylphenols in the environment - occurrence, fate, health effects and analytical techniques”. Advances in Environmental Research, (2013), 2(3), 179–202. https://doi.org/10.12989/aer.2013.2.3.179. DOI: https://doi.org/10.12989/aer.2013.2.3.179

5. Ohore, O. E., & Songhe, Z., “Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review”. Scientific African, (2019), 5, 1–12. https://doi.org/10.1016/j.sciaf.2019.e00135. DOI: https://doi.org/10.1016/j.sciaf.2019.e00135

6. Genuis, S. J., Beesoon, S., Birkholz, D., & Lobo, R. A., “Human excretion of bisphenol A: Blood, urine, and sweat (BUS) study”. Journal of Environmental and Public Health, (2012), 2012, 1–10. https://doi.org/10.1155/2012/185731. DOI: https://doi.org/10.1155/2012/185731

7. Arnold, S. M., Clark, K. E., Staples, C. A., Klecka, G. M., Dimond, S. S., Caspers, N., & Hentges, S. G., “Relevance of drinking water as a source of human exposure to bisphenol A”. Journal of Exposure Science and Environmental Epidemiology, (2013), 23(2), 137–144. https://doi.org/10.1038/jes.2012.66. DOI: https://doi.org/10.1038/jes.2012.66

8. Gibson, R., Durán-Álvarez, J. C., Estrada, K. L., Chávez, A., & Jiménez Cisneros, B., “Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico”. Chemosphere, (2010), 81(11), 1437–1445. https://doi.org/10.1016/j.chemosphere.2010.09.006. DOI: https://doi.org/10.1016/j.chemosphere.2010.09.006

9. Gong, J., Huang, Y., Huang, W., Ran, Y., & Chen, D., “Multiphase partitioning and risk assessment of endocrine-disrupting chemicals in the Pearl River, China”. Environmental Toxicology and Chemistry, (2016), 35(10), 2474–2482. https://doi.org/10.1002/etc.3419. DOI: https://doi.org/10.1002/etc.3419

10. Boyd, G. R., Palmeri, J. M., Zhang, S., & Grimm, D. A., “Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA”. Science of the Total Environment, (2004), 333(1–3), 137–148. https://doi.org/10.1016/j.scitotenv.2004.03.018. DOI: https://doi.org/10.1016/j.scitotenv.2004.03.018

11. Cruz-López, A., Dávila-Pórcel, R. A., de León-Gómez, H., Rodríguez-Martínez, J. M., Suárez-Vázquez, S. I., Cardona-Benavides, A., Castro-Larragoitia, G. J., Boreselli, L., de Lourdes Villalba, M., Pinales-Munguía, A., Silva-Hidalgo, H., de la Garza, R., & del Socorro Espino-Valdes, M., “Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico”. Environmental Monitoring and Assessment, (2020), 192(8). https://doi.org/10.1007/s10661-020-08446-4. DOI: https://doi.org/10.1007/s10661-020-08446-4

12. Han, C., & Hong, Y. C., “Bisphenol A, Hypertension, and Cardiovascular Diseases: Epidemiological, Laboratory, and Clinical Trial Evidence”. Current Hypertension Reports, (2016), 18, 2, 1–5. https://doi.org/10.1007/s11906-015-0617-2. DOI: https://doi.org/10.1007/s11906-015-0617-2

13. Shekoohiyan, S., Rahmania, A., Chamack, M., Moussavi, G., Rahmanian, O., Alipour, V., & Giannakis, S., “A novel CuO/Fe2O3/ZnO composite for visible-light assisted photocatalytic oxidation of Bisphenol A: Kinetics, degradation pathways, and toxicity elimination”. Separation and Purification Technology, (2020), 242. 1–17. https://doi.org/10.1016/j.seppur.2020.116821 DOI: https://doi.org/10.1016/j.seppur.2020.116821

14. Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C., “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane”. Environmental Science and Pollution Research, (2020), 27(3), 2522–2565. https://doi.org/10.1007/s11356-019-07193-5. DOI: https://doi.org/10.1007/s11356-019-07193-5

15. Hunge, Y. M., Yadav, A. A., Khan, S., Takagi, K., Suzuki, N., Teshima, K., Terashima, C., & Fujishima, A., “Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination”. Journal of Colloid and Interface Science, (2021), 582 Parte B, 1058–1066. https://doi.org/10.1016/j.jcis.2020.08.102. DOI: https://doi.org/10.1016/j.jcis.2020.08.102

16. Zhu, Z., Wan, S., Zhao, Y., Qin, Y., Ge, X., Zhong, Q., & Bu, Y., “Recent progress in Bi2WO6‐Based photocatalysts for clean energy and environmental remediation: Competitiveness, challenges, and future perspectives”. Nano Select, (2021), 2(2), 187–215. https://doi.org/10.1002/nano.202000127. DOI: https://doi.org/10.1002/nano.202000127

17. Kominami, H., Murakami, S. Y., Kato, J. I., Kera, Y., & Ohtani, B., “Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems”. Journal of Physical Chemistry B, (2002), 106(40), 10501–10507. https://doi.org/10.1021/jp0147224. DOI: https://doi.org/10.1021/jp0147224

18. Nagyné-Kovács, T., Shahnazarova, G., Lukács, I. E., Szabó, A., Hernadi, K., Igricz, T., László, K., Szilágyi, I. M., & Pokol, G., “Effect of pH in the hydrothermal preparation of Bi2WO6 nanostructures”. Materials, (2019), 12, 1728, 1–13. https://doi.org/10.3390/ma12111728. DOI: https://doi.org/10.3390/ma12111728

19. Zhang, K., Wang, J., Jiang, W., Yao, W., Yang, H., & Zhu, Y., “Self-assembled Perylene Diimide Based Supramolecular Heterojunction with Bi2WO6 for Efficient Visible-Light-Driven Photocatalysis”. Applied Catalysis B: Environmental, (2018). 232, 175–181. doi:10.1016/j.apcatb.2018.03.059. DOI: https://doi.org/10.1016/j.apcatb.2018.03.059

20. Wang, B., Yang, H., Xian, T., Di, L. J., Li, R. S., & Wang, X. X., “Synthesis of Spherical Bi2WO6 Nanoparticles by a Hydrothermal Route and Their Photocatalytic Properties”. Journal of Nanomaterials, (2015), 2015, 1–7. https://doi.org/10.1155/2015/146327. DOI: https://doi.org/10.1155/2015/146327

21. Waehayee, A., Pongsawakul, C., Ngoipala, A., Phonsuksawang, P., Jiamprasertboon, A., Wannapaiboon, S., Nakajima, H., Butburee, T., Suthirakun, S., & Siritanon, T., “Promoting superoxide generation in Bi2WO6 by less electronegative substitution for enhanced photocatalytic performance: an example of Te doping”. Catalysis Science and Technology, (2021), 11(18), 6291–6304. https://doi.org/10.1039/d1cy00739d. DOI: https://doi.org/10.1039/D1CY00739D

22. Wang, C., Zhang, H., Li, F., & Zhu, L., “Degradation and mineralization of bisphenol a by mesoporous Bi2WO6 under simulated solar light irradiation”. Environmental Science and Technology, (2010), 44(17), 6843–6848. https://doi.org/10.1021/es101890w. DOI: https://doi.org/10.1021/es101890w

23. Chu, Y., Miao, B., Zheng, X., & Su, H., “Fabrication of flower-globular Bi2WO6/BiOI@Ag3PO4 photocatalyst for the degradation of bisphenol A and cefepime under sunlight: Photoelectric properties, degradation performance, mechanism and biodegradability enhancement”. Separation and Purification Technology, (2021), 272, 1–16. https://doi.org/10.1016/j.seppur.2021.118866. DOI: https://doi.org/10.1016/j.seppur.2021.118866

24. Mengting, Z., Kurniawan, T. A., Yanping, Y., Avtar, R., & Othman, M. H. D., “2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation”. Materials Science and Engineering C, (2020), 108,1–32. https://doi.org/10.1016/j.msec.2019.110420. DOI: https://doi.org/10.1016/j.msec.2019.110420

25. Peng, L., Zhang, R., Lei, Q., Luo, J., & Wang, P., “A comparison study of the Bi2WO6 based composite photocatalysts for the degradation of bisphenol A (BPA) under visible-light irradiation”. International Journal of Environmental Analytical Chemistry, (2023), 103(11), 2464–2479. https://doi.org/10.1080/03067319.2021.1893710. DOI: https://doi.org/10.1080/03067319.2021.1893710

Published

2025-01-31

How to Cite

Nava Núñez, M. Y., Soto Álvarez, P. R., & Martínez de la Cruz, A. (2025). Removal of the contaminant Bisphenol A in the aqueous phase using Bi2WO6 as a photocatalyst. Revista Ingenierías, 28(98), 3–14. https://doi.org/10.29105/ingenierias28.98-963

Issue

Section

Artículos