Efecto de los parámetros de impresión 3D en la resistencia mecánica del ABS
DOI:
https://doi.org/10.29105/ingenierias28.98-968Palabras clave:
Impresión 3D, ABS, propiedades mecánicas, diseño de experimentosResumen
Dado el continuo avance de la tecnología de impresión 3D y el creciente interés en desarrollar prototipos o productos con propiedades mejoradas, este estudio se centra en la evaluación de las propiedades mecánicas del acrilonitrilo-butadieno-estireno (ABS). Se fabricaron probetas de ABS bajo diferentes condiciones de impresión, las cuales fueron evaluadas mediante un diseño de experimentos y ensayos de tensión para identificar los parámetros óptimos que maximizan la resistencia a la tensión del material. Adicionalmente, se realizó un análisis mecánico dinámico (DMA) para la probeta con mejores condiciones de impresión, evaluando su comportamiento viscoelástico en función de la temperatura. Los resultados del DMA muestran una temperatura de transición vítrea alrededor de 123°C, indicando la máxima disipación de energía. Por encima de los 160°C, el material mostró un comportamiento viscoso asociado al inicio del flujo, información clave para optimizar procesos como la inyección, extrusión e impresión 3D. Este enfoque integral combina técnicas de caracterización mecánica y viscoelástica, permitiendo establecer una relación entre los parámetros de impresión y el desempeño del ABS, contribuyendo al diseño eficiente de procesos y aplicaciones.
Descargas
Citas
1. Zhang, X., Chen, L., Mulholland, T., Osswald, T., Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Applied Sciences, vol. 1, no. 616, pp. 1-12, 2019. DOI: https://doi.org/10.1007/s42452-019-0639-5
2. Štaffová, M., Ondreáš, F., Svatík, J., Zbončák, M., Jančář, J., Lepcio P., 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties, Polymer Testing, vol. 108, pp. 1-11, 2022. DOI: https://doi.org/10.1016/j.polymertesting.2022.107499
3. Fontana, L., Minetola, P., Iuliano, L., Rifuggiato, S., Khandpur, M., Stiuso, V., An investigation of the influence of 3d printing parameters on the tensile strength of PLA material, Materials Today: Proceedings, vol. 57, Part 2, pp. 657-663, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.02.078
4. Vidakis, N., Petousis, M., Velidakis, M., Spiridaki, M., Kechagias. J., Mechanical Performance of Fused Filament Fabricated and 3D-Printed Polycarbonate Polymer and Polycarbonate/Cellulose Nanofiber Nanocomposites, Fibers, vol. 9(11), no. 74, pp. 1-15, 2021. DOI: https://doi.org/10.3390/fib9110074
5. Vidakis, N., Petousis, M., Savvakis, K., Maniadi, A., Koudoumas, E., A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM), International Journal of Plastics Technology, vol. 23, pp.195–206, 2019. DOI: https://doi.org/10.1007/s12588-019-09248-1
6. Hanon, M., Dobosa, J., Zsidaia, L., The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness, Procedia Manufacturing, vol. 54, pp. 244–249, 2021. DOI: https://doi.org/10.1016/j.promfg.2021.07.038
7. Hanon, M., Zsidai, L., Mac, Q., Accuracy investigation of 3D printed PLA with various process parameters and different colors, Materials Today: Proceedings, vol. 42, Part 5, pp. 3089-3096, 2021. DOI: https://doi.org/10.1016/j.matpr.2020.12.1246
8. Gebisa, A., Lemu, H., Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment, Materials, vol. 11, no. 11, pp 1-23, 2018. DOI: https://doi.org/10.3390/ma11040500
9. Sood, A., Ohdar, R., Mahapatra, S., Experimental investigation and empirical modelling of FDM process for compressive strength improvement, Journal of Advanced Research, vol. 3, no. 1, pp. 81-90, 2012. DOI: https://doi.org/10.1016/j.jare.2011.05.001
10. Leite, M., Fernandes, J., Deus, A., Reis, L., Vaz, M., Study of the influence of 3D printing parameters on the mechanical properties of PLA, 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018) pp. 547-552, 2018.
11. Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J., Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials & Design, vol. 4, no. 15, pp. 143-157, 2017. DOI: https://doi.org/10.1016/j.matdes.2017.03.065
12. Wasti, S., Triggs, E., Farag, R., Auad, M., Adhikari, S., Bajwa, D., Li, M., Ragauskas, A., Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing, Composites Part B: Engineering, vol. 205, pp. 1-23, 2021. DOI: https://doi.org/10.1016/j.compositesb.2020.108483
13. Markiz, N., Horváth, E., Ficzere, P., Stiffness and damping behavior of 3D printed specimens, Polymer Testing, vol. 109), pp. 127-130, 2020. DOI: https://doi.org/10.30657/pea.2020.26.24
14. Hikmat, M., Rostam, S., Ahmed, Y., Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology, Results in Engineering, vol. 11, pp. 1-10, 2021. DOI: https://doi.org/10.1016/j.rineng.2021.100264
15. Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M., The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer, Rapid Prototyping Journal, vol. 21, pp. 604-617, 2015. DOI: https://doi.org/10.1108/RPJ-09-2014-0135
16. Tunçel, O., Optimization of Charpy Impact Strength of Tough PLA Samples Produced by 3D Printing Using the Taguchi Method, Polymers, vol. 16, pp. 2-17, 2024. DOI: https://doi.org/10.3390/polym16040459
17. Kothandaraman, L., Balasubramanian, N., Optimization of FDM printing parameters for square lattice structures: Improving mechanical characteristics, Materials today: Proccedings, vol. 1, 2024. DOI: https://doi.org/10.1016/j.matpr.2024.04.033
18.Nazma, M., Shadat, O., Rangan, N., Parametric optimization and sensitivity analysis of the integrated Taguchi-CRITIC-EDAS method to enhance the surface quality and tensile test behavior of 3D printed PLA and ABS parts, Heliyon, vol. 11, pp. e41289, 2025. DOI: https://doi.org/10.1016/j.heliyon.2024.e41289
19.Rajabi, A., Rostami, S., Aliha, M., Berto, F., Optimization of Properties for 3D Printed PLA Material Using Taguchi, ANOVA and Multi-Objective Methodologies, Procedia Structural Integrity, vol. 34, pp. 71-77, 2021. DOI: https://doi.org/10.1016/j.prostr.2021.12.011
20. John, J., Devjani, D., Ali, S., Abdallah, S., Pervaiz, S., Optimization of 3D printed polylactic acid structures with different infill patterns using Taguchi-grey relational analysis, Advanced Industrial and Engineering Polymer Reasearch, vol. 6, pp. 62-78, 2023. DOI: https://doi.org/10.1016/j.aiepr.2022.06.002
21. Krivic, G., Rostam y Slavič, J., Simultaneous non-contact identification of the elastic modulus, damping and coefficient of thermal expansion in 3D-printed structures, Polymer Testing, vol. 125, pp. 108131, 2023. DOI: https://doi.org/10.1016/j.polymertesting.2023.108131
22. Medel, F., Abad, J., Esteban, V., Influence of printing direction on 3D printed ABS specimens, Production Engineering Archives, vol. 26(3), pp. 107529, 2022. DOI: https://doi.org/10.1016/j.polymertesting.2022.107529
23. Mishra, V., Kapil, Ch., Negi, S., Kar, S., Veeman, E., Dynamic mechanical analysis of continuous metal wire-reinforced recycled thermoplastic composite fabricated 3D printing technique, Materials Letters, vol. 382, pp. 137928, 2025. DOI: https://doi.org/10.1016/j.matlet.2024.137928
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Flor Yanhira Rentería-Baltiérrez, Jesús Gabino Puente-Córdova, Pedro Inés Loera-Martínez, Arlethe Yari Aguilar-Villarreal

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.