Effect of 3D printing parameters on the mechanical strength of ABS
DOI:
https://doi.org/10.29105/ingenierias28.98-968Keywords:
3D printing, ABS, mechanical properties, design of experimentsAbstract
The continuous advancement of 3D printing technology and the growing interest in developing prototypes or products with enhanced properties have driven this study, which focuses on evaluating the mechanical properties of acrylonitrile butadiene styrene (ABS). ABS specimens were fabricated under different printing conditions, which were assessed through a design of experiments and tensile tests to identify the optimal parameters that maximize the material's tensile strength. Additionally, dynamic mechanical analysis (DMA) was performed on the sample with the best printing conditions, evaluating its viscoelastic behavior as a function of temperature. The DMA results identified a glass transition temperature around 123°C, indicating the maximum energy dissipation. Above 160°C, the material exhibited a viscous behavior associated with the onset of flow, providing key information for optimizing processes such as injection molding, extrusion, and 3D printing. This integrated approach combines mechanical and viscoelastic characterization techniques to provide valuable insights into the relationship between printing parameters and the performance of ABS, contributing to the efficient design of processes and applications.
Downloads
References
1. Zhang, X., Chen, L., Mulholland, T., Osswald, T., Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Applied Sciences, vol. 1, no. 616, pp. 1-12, 2019. DOI: https://doi.org/10.1007/s42452-019-0639-5
2. Štaffová, M., Ondreáš, F., Svatík, J., Zbončák, M., Jančář, J., Lepcio P., 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties, Polymer Testing, vol. 108, pp. 1-11, 2022. DOI: https://doi.org/10.1016/j.polymertesting.2022.107499
3. Fontana, L., Minetola, P., Iuliano, L., Rifuggiato, S., Khandpur, M., Stiuso, V., An investigation of the influence of 3d printing parameters on the tensile strength of PLA material, Materials Today: Proceedings, vol. 57, Part 2, pp. 657-663, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.02.078
4. Vidakis, N., Petousis, M., Velidakis, M., Spiridaki, M., Kechagias. J., Mechanical Performance of Fused Filament Fabricated and 3D-Printed Polycarbonate Polymer and Polycarbonate/Cellulose Nanofiber Nanocomposites, Fibers, vol. 9(11), no. 74, pp. 1-15, 2021. DOI: https://doi.org/10.3390/fib9110074
5. Vidakis, N., Petousis, M., Savvakis, K., Maniadi, A., Koudoumas, E., A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM), International Journal of Plastics Technology, vol. 23, pp.195–206, 2019. DOI: https://doi.org/10.1007/s12588-019-09248-1
6. Hanon, M., Dobosa, J., Zsidaia, L., The influence of 3D printing process parameters on the mechanical performance of PLA polymer and its correlation with hardness, Procedia Manufacturing, vol. 54, pp. 244–249, 2021. DOI: https://doi.org/10.1016/j.promfg.2021.07.038
7. Hanon, M., Zsidai, L., Mac, Q., Accuracy investigation of 3D printed PLA with various process parameters and different colors, Materials Today: Proceedings, vol. 42, Part 5, pp. 3089-3096, 2021. DOI: https://doi.org/10.1016/j.matpr.2020.12.1246
8. Gebisa, A., Lemu, H., Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment, Materials, vol. 11, no. 11, pp 1-23, 2018. DOI: https://doi.org/10.3390/ma11040500
9. Sood, A., Ohdar, R., Mahapatra, S., Experimental investigation and empirical modelling of FDM process for compressive strength improvement, Journal of Advanced Research, vol. 3, no. 1, pp. 81-90, 2012. DOI: https://doi.org/10.1016/j.jare.2011.05.001
10. Leite, M., Fernandes, J., Deus, A., Reis, L., Vaz, M., Study of the influence of 3D printing parameters on the mechanical properties of PLA, 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018) pp. 547-552, 2018.
11. Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J., Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials & Design, vol. 4, no. 15, pp. 143-157, 2017. DOI: https://doi.org/10.1016/j.matdes.2017.03.065
12. Wasti, S., Triggs, E., Farag, R., Auad, M., Adhikari, S., Bajwa, D., Li, M., Ragauskas, A., Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing, Composites Part B: Engineering, vol. 205, pp. 1-23, 2021. DOI: https://doi.org/10.1016/j.compositesb.2020.108483
13. Markiz, N., Horváth, E., Ficzere, P., Stiffness and damping behavior of 3D printed specimens, Polymer Testing, vol. 109), pp. 127-130, 2020. DOI: https://doi.org/10.30657/pea.2020.26.24
14. Hikmat, M., Rostam, S., Ahmed, Y., Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology, Results in Engineering, vol. 11, pp. 1-10, 2021. DOI: https://doi.org/10.1016/j.rineng.2021.100264
15. Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M., The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer, Rapid Prototyping Journal, vol. 21, pp. 604-617, 2015. DOI: https://doi.org/10.1108/RPJ-09-2014-0135
16. Tunçel, O., Optimization of Charpy Impact Strength of Tough PLA Samples Produced by 3D Printing Using the Taguchi Method, Polymers, vol. 16, pp. 2-17, 2024. DOI: https://doi.org/10.3390/polym16040459
17. Kothandaraman, L., Balasubramanian, N., Optimization of FDM printing parameters for square lattice structures: Improving mechanical characteristics, Materials today: Proccedings, vol. 1, 2024. DOI: https://doi.org/10.1016/j.matpr.2024.04.033
18.Nazma, M., Shadat, O., Rangan, N., Parametric optimization and sensitivity analysis of the integrated Taguchi-CRITIC-EDAS method to enhance the surface quality and tensile test behavior of 3D printed PLA and ABS parts, Heliyon, vol. 11, pp. e41289, 2025. DOI: https://doi.org/10.1016/j.heliyon.2024.e41289
19.Rajabi, A., Rostami, S., Aliha, M., Berto, F., Optimization of Properties for 3D Printed PLA Material Using Taguchi, ANOVA and Multi-Objective Methodologies, Procedia Structural Integrity, vol. 34, pp. 71-77, 2021. DOI: https://doi.org/10.1016/j.prostr.2021.12.011
20. John, J., Devjani, D., Ali, S., Abdallah, S., Pervaiz, S., Optimization of 3D printed polylactic acid structures with different infill patterns using Taguchi-grey relational analysis, Advanced Industrial and Engineering Polymer Reasearch, vol. 6, pp. 62-78, 2023. DOI: https://doi.org/10.1016/j.aiepr.2022.06.002
21. Krivic, G., Rostam y Slavič, J., Simultaneous non-contact identification of the elastic modulus, damping and coefficient of thermal expansion in 3D-printed structures, Polymer Testing, vol. 125, pp. 108131, 2023. DOI: https://doi.org/10.1016/j.polymertesting.2023.108131
22. Medel, F., Abad, J., Esteban, V., Influence of printing direction on 3D printed ABS specimens, Production Engineering Archives, vol. 26(3), pp. 107529, 2022. DOI: https://doi.org/10.1016/j.polymertesting.2022.107529
23. Mishra, V., Kapil, Ch., Negi, S., Kar, S., Veeman, E., Dynamic mechanical analysis of continuous metal wire-reinforced recycled thermoplastic composite fabricated 3D printing technique, Materials Letters, vol. 382, pp. 137928, 2025. DOI: https://doi.org/10.1016/j.matlet.2024.137928
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Flor Yanhira Rentería-Baltiérrez, Jesús Gabino Puente-Córdova, Pedro Inés Loera-Martínez, Arlethe Yari Aguilar-Villarreal

This work is licensed under a Creative Commons Attribution 4.0 International License.