Efecto de la composición química en el procesamiento de aceros microaleados
DOI:
https://doi.org/10.29105/ingenierias29.100-977Palabras clave:
Aceros microaleados, procesamiento termomecánico, diagramas CCT, diagramas PTT, enfriamientoResumen
En el presente artículo se discuten las variables que influyen en el procesamiento termomecánico y enfriamiento, con el fin de crear rutas de proceso que tomen en cuenta la composición química, la optimización microestructural y las variables del proceso. Con estos parámetros, se podrán desarrollar aceros con resistencias superiores a 1 GPa, mediante el procesamiento termomecánico diseñado con ecuaciones constitutivas y los diagramas de Precipitación-Tiempo-Temperatura (PTT), considerando el efecto de la composición química en la cinética de recristalización dinámica, con esta información se podrán elegir parámetros de procesamiento y rutas de enfriamiento, mediante diagramas de transformación de enfriamiento continuo (CCT).
Descargas
Citas
1. Krauss, G. Steels: Processing, Structure, and Performance. 2.ª ed., ASM International, 2015. DOI: https://doi.org/10.31399/asm.tb.spsp2.9781627082655
2. Sun, L., Liu, X., Xu, X., et al. “Review on niobium application in microalloyed steel.” Journal of Iron and Steel Research International, vol. 29, 2022, pp. 1513–1525. https://doi.org/10.1007/s42243-022-00789-1 DOI: https://doi.org/10.1007/s42243-022-00789-1
3. Jiménez Lugos, J. C. Modelado de deformación en caliente de acero bajo carbono en la zona intercrítica. Tesis de maestría, Instituto Politécnico Nacional, 2017.
4. Nasiri, Z., Ghaemifar, S., Naghizadeh, M., & Mirzadeh, H. “Thermal Mechanisms of Grain Refinement in Steels: A Review.” Metals and Materials International, 2020. https://doi.org/10.1007/s12540-020-00700-1 DOI: https://doi.org/10.1007/s12540-020-00700-1
5. Dieter, G. E., Kuhn, H. A., & Semiatin, S. L. Handbook of Workability and Process Design. ASM International, 2003.
6. Gao, X., Wu, H., Liu, M., Zhang, Y., & Zhou, X. “Dynamic recovery and recrystallization behaviors of C71500 Copper-Nickel alloy under hot deformation.” Journal of Materials Engineering and Performance, vol. 29, no. 11, 2020, pp. 7678–7692. https://doi.org/10.1007/s11665-020-05221-x DOI: https://doi.org/10.1007/s11665-020-05221-x
7. Altamirano Guerrero, G. Estudio de la deformación plástica en caliente de aceros avanzados de ultra-alta resistencia (A-UHSS) microaleados con boro. Tesis doctoral, Universidad Michoacana de San Nicolás de Hidalgo, 2014. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/1298
8. Li, Y., Song, R., Wen, E., & Yang, F. “Hot deformation and dynamic recrystallization behavior of Austenite-Based Low-Density FE–MN–AL–C steel.” Acta Metallurgica Sinica (English Letters), vol. 29, no. 5, 2016, pp. 441–449. https://doi.org/10.1007/s40195-016-0406-1 DOI: https://doi.org/10.1007/s40195-016-0406-1
9. Cabrera, J., & Prado, J. “Simulación de la fluencia en caliente de acero mediante el uso de ecuaciones constitutivas.” Scientia Et Technica, vol. 2, no. 39, 2008, pp. 182–187. https://doi.org/10.22517/23447214.3181
10. Estrin, Y., & Mecking, H. “A unified phenomenological description of work hardening and creep based on one-parameter models.” Acta Metallurgica, vol. 32, no. 1, 1984, pp. 57–70. https://doi.org/10.1016/0001-6160(84)90202-5 DOI: https://doi.org/10.1016/0001-6160(84)90202-5
11. Bergström, Y. “A dislocation model for the stress-strain behaviour of polycrystalline α-Fe.” Materials Science and Engineering, vol. 5, no. 4, 1970, pp. 193–200. https://doi.org/10.1016/0025-5416(70)90081-9 DOI: https://doi.org/10.1016/0025-5416(70)90081-9
12. Jonas, J. J., Quelennec, X., Jiang, L., & Martin, É. “The Avrami kinetics of dynamic recrystallization.” Acta Materialia, vol. 57, no. 9, 2009, pp. 2748–2756. https://doi.org/10.1016/j.actamat.2009.02.033 DOI: https://doi.org/10.1016/j.actamat.2009.02.033
13. Li, K., Shao, J., Yao, C., et al. “Effect of NB-TI microalloyed steel precipitation behavior on hot rolling strip shape and FEM simulation.” Materials, vol. 17, no. 3, 2024, p. 651. https://doi.org/10.3390/ma17030651 DOI: https://doi.org/10.3390/ma17030651
14. Eskandari, H., Reihanian, M., & Zaree, S. A. “Constitutive Modeling, Processing Map Optimization, and Recrystallization Kinetics of high-grade X80 pipeline steel.” Journal of Materials Research and Technology, 2024. https://doi.org/10.1016/j.jmrt.2024.09.217 DOI: https://doi.org/10.1016/j.jmrt.2024.09.217
15. Sun, W. P., & Hawbolt, E. B. “Comparison between Static and Metadynamic Recrystallization.” ISIJ International, vol. 37, no. 10, 1997, pp. 1000–1009. https://doi.org/10.2355/isijinternational.37.1000 DOI: https://doi.org/10.2355/isijinternational.37.1000
16. Ding, S., et al. “Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization.” Journal of Materials Processing Technology, vol. 299, 2021, p. 117359. https://doi.org/10.1016/j.jmatprotec.2021.117359 DOI: https://doi.org/10.1016/j.jmatprotec.2021.117359
17. Palmiere, E. J., Mahfouf, M., & Pinna, C. International Conference on Thermomechanical Processing: Mechanics, Microstructure & Control: 23–26 June 2002, the University of Sheffield, England: Conference Proceedings. Department of Engineering Materials, University of Sheffield, 2003. https://books.google.com.mx/books?id=JI2oAAAACAAJ
18. Rios, P. R., Siciliano, F., Jr., Sandim, H. R. Z., Plaut, R. L., & Padilha, A. F. “Nucleation and growth during recrystallization.” Materials Research, vol. 8, no. 3, 2005, pp. 225–238. https://doi.org/10.1590/s1516-14392005000300002 DOI: https://doi.org/10.1590/S1516-14392005000300002
19. Skobir, D. A. “High-Strength Low-Alloy (HSLA) Steels.” Materials and Technology, vol. 45, 2011, pp. 295–301.
20. Cabrera, J. M., Omar, A. A., & Prado, J. M. “Simulación de la fluencia en caliente de un acero microaleado con un contenido medio de carbono. II parte. Recristalización dinámica: inicio y cinética.” Revista De Metalurgia, vol. 33, no. 3, 1997, pp. 143–152. https://doi.org/10.3989/revmetalm.1997.v33.i3.857 DOI: https://doi.org/10.3989/revmetalm.1997.v33.i3.857
21. Medina, S. F., Quispe, A., & Gómez, M. “Precipitation model in microalloyed steels both isothermal and continuous cooling conditions.” Revista De Metalurgia, vol. 51, no. 4, 2015, e056. https://doi.org/10.3989/revmetalm.056 DOI: https://doi.org/10.3989/revmetalm.056
22. Siciliano, F., & Jonas, J. J. “Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels.” Metallurgical and Materials Transactions A, vol. 31, no. 2, 2000, pp. 511–530. https://doi.org/10.1007/s11661-000-0287-8 DOI: https://doi.org/10.1007/s11661-000-0287-8
23. Zeng, Z., et al. “Effect of Nb content and thermal deformation on the microstructure and mechanical properties of high-strength anti-seismic rebar.” Materials Science and Engineering A, vol. 840, 2022, p. 142929. https://doi.org/10.1016/j.msea.2022.142929 DOI: https://doi.org/10.1016/j.msea.2022.142929
24. Primo, G. L. Efecto de los parámetros de laminación y post-tratamiento térmico por inducción en la mejora de propiedades mecánicas de aceros microaleados. Universidad de Navarra, 2017. https://dadun.unav.edu/bitstream/10171/45292/1/Gorka%20Larzabal.pdf
25. Wray, P. J. “Effect of composition and initial grain size on the dynamic recrystallization of austenite in plain carbon steels.” Metallurgical Transactions A, vol. 15, no. 11, 1984, pp. 2009–2019. https://doi.org/10.1007/bf02646835 DOI: https://doi.org/10.1007/BF02646835
26. Yang, Y., Zhao, X., Dong, C., & Zhao, X. “Influence of hot deformation and precipitates on the recrystallization of NB-V-TI Free-Cutting steel.” Metals, vol. 10, no. 12, 2020, p. 1587. https://doi.org/10.3390/met10121587 DOI: https://doi.org/10.3390/met10121587
27. Serajzadeh, S., & Taheri, A. K. “Effect of carbon on the kinetics of dynamic restoration and flow behavior of carbon steels.” Mechanics of Materials, vol. 35, no. 7, 2003, pp. 653–660. https://doi.org/10.1016/s0167-6636(02)00291-0 DOI: https://doi.org/10.1016/S0167-6636(02)00291-0
28. Lee, C. W., Seong, H. G., & De Cooman, B. C. “Effect of vanadium on the hot deformation behavior of Vanadium-Microalloyed steel for thin slab direct rolling.” Metallurgical and Materials Transactions A, vol. 47, no. 7, 2016, pp. 3649–3663. https://doi.org/10.1007/s11661-016-3512-9 DOI: https://doi.org/10.1007/s11661-016-3512-9
29. Kim, K., Du, L., Choe, H., Lee, T., & Lee, G. “Influence of vanadium content on hot deformation behavior of Low-Carbon boron microalloyed steel.” Acta Metallurgica Sinica (English Letters), vol. 33, no. 5, 2020, pp. 705–715. https://doi.org/10.1007/s40195-020-01005-3 DOI: https://doi.org/10.1007/s40195-020-01005-3
30. Mayo, U., Isasti, N., Rodriguez-Ibabe, J. M., & Uranga, P. “Interaction between Microalloying Additions and Phase Transformation during Intercritical Deformation in Low Carbon Steels.” Metals, vol. 9, no. 10, 2019, p. 1049. https://doi.org/10.3390/met9101049 DOI: https://doi.org/10.3390/met9101049
31. Mejía, I., Salas-Reyes, A., Bedolla-Jacuinde, A., Calvo, J., & Cabrera, J. “Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel.” Materials Science and Engineering A, vol. 616, 2014, pp. 229–239. https://doi.org/10.1016/j.msea.2014.08.030 DOI: https://doi.org/10.1016/j.msea.2014.08.030
32. Sun, W., Lu, C., Tieu, A., Jiang, Z., Liu, X., & Wang, G. “Influence of Nb, V and Ti on peak strain of deformed austenite in Mo-based micro-alloyed steels.” Journal of Materials Processing Technology, vols. 125–126, 2002, pp. 72–76. https://doi.org/10.1016/s0924-0136(02)00287-x DOI: https://doi.org/10.1016/S0924-0136(02)00287-X
33. Reyes-Calderón, F., Mejía, I., Boulaajaj, A., & Cabrera, J. “Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel.” Materials Science and Engineering A, vol. 560, 2012, pp. 552–560. https://doi.org/10.1016/j.msea.2012.09.101 DOI: https://doi.org/10.1016/j.msea.2012.09.101
34. Seo, E. J., Speer, J. G., Matlock, D. K., & Cryderman, R. L. “Effect of Mo in Combination with Nb on Austenite Grain Size Control in Vacuum Carburizing Steels.” Journal of Materials Engineering and Performance, vol. 29, no. 6, 2020, pp. 3575–3584. https://doi.org/10.1007/s11665-020-04751-8 DOI: https://doi.org/10.1007/s11665-020-04751-8
35. Lee, S., & Lee, Y. “Prediction of austenite grain growth during austenitization of low alloy steels.” Materials & Design (1980–2015), vol. 29, no. 9, 2008, pp. 1840–1844. https://doi.org/10.1016/j.matdes.2008.03.009 DOI: https://doi.org/10.1016/j.matdes.2008.03.009
36. Kumar, S., Aashranth, B., Samantaray, D., Davinci, M. A., Borah, U., & Bhaduri, A. “Influence of nitrogen on kinetics of dynamic recrystallization in Fe-Cr-Ni-Mo steel.” Vacuum, vol. 156, 2018, pp. 20–29. https://doi.org/10.1016/j.vacuum.2018.07.010 DOI: https://doi.org/10.1016/j.vacuum.2018.07.010
37. Serajzadeh, S., & Taheri, A. K. “An investigation of the silicon role on austenite recrystallization.” Materials Letters, vol. 56, no. 6, 2002, pp. 984–989. https://doi.org/10.1016/s0167-577x(02)00659-6 DOI: https://doi.org/10.1016/S0167-577X(02)00659-6
38. Cabañas, N., Penning, J., Akdut, N., & De Cooman, B. C. “High-temperature deformation properties of austenitic Fe-Mn alloys.” Metallurgical and Materials Transactions A, vol. 37, no. 11, 2006, pp. 3305–3315. https://doi.org/10.1007/bf02586165 DOI: https://doi.org/10.1007/BF02586165
39. Maruyama, N., Uemori, R., & Sugiyama, M. “The role of niobium in the retardation of the early stage of austenite recovery in hot-deformed steels.” Materials Science and Engineering A, vol. 250, no. 1, 1998, pp. 2–7. https://doi.org/10.1016/s0921-5093(98)00528-0 DOI: https://doi.org/10.1016/S0921-5093(98)00528-0
40. Abrahamson, E. P., & Blakeney, B. S. Jr. “The effect of dilute transition element additions on the recrystallization of Iron.” Transactions of the Metallurgical Society of AIME, vol. 218, 1960, pp. 1101–1104. DOI: https://doi.org/10.21236/AD0260489
41. Pohjonen, A., Somani, M., & Porter, D. “Effects of chemical composition and austenite deformation on the onset of ferrite formation for arbitrary cooling paths.” Metals, vol. 8, no. 7, 2018, p. 540. https://doi.org/10.3390/met8070540 DOI: https://doi.org/10.3390/met8070540
42. Álvarez Moreno, L. F. Transformaciones de inequilibrio producidas por ciclos anisotérmicos en aceros inoxidables martensíticos tipo 13Cr y 14CrMoV. Universidad Complutense de Madrid, 1991. http://hdl.handle.net/10261/110786
43. Zhang, M., Li, L., Fu, R., Krizan, D., & De Cooman, B. “Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels.” Materials Science and Engineering A, vols. 438–440, 2006, pp. 296–299. https://doi.org/10.1016/j.msea.2006.01.128 DOI: https://doi.org/10.1016/j.msea.2006.01.128
44. Li, Z., Wu, D., Lv, H., & Fang, S. “Continuous cooling transformation behaviour of C-SI-MN TRIP Steel.” Journal of Iron and Steel Research International, vol. 14, no. 5, 2007, pp. 277–281. https://doi.org/10.1016/s1006-706x(08)60094-1 DOI: https://doi.org/10.1016/S1006-706X(08)60094-1
45. Neugebauer, R., Rautenstrauch, A., & Garcia, E. M. “Influence of the alloying elements on phase transitions of high strength steels.” Advanced Materials Research, vol. 337, 2011, pp. 358–362. https://doi.org/10.4028/www.scientific.net/amr.337.358 DOI: https://doi.org/10.4028/www.scientific.net/AMR.337.358
46. Grina, O., Fonstein, N., Yakubovsky, O., Panahi, D., Bhattacharya, D., & Jansto, S. “The influence of Mo, Cr and B alloying on phase transformation and mechanical properties in Nb added high strength dual phase steels.” 7th Int. Conf. High Strength Low Alloy Steels (HSLA Steels 2015), Microalloying 2015, Offshore Eng. Steels 2015, vol. 1, 2015, pp. 237–245. https://doi.org/10.1007/978-3-319-48767-0_24 DOI: https://doi.org/10.1002/9781119223399.ch24
47. Ali, N., & Al Rashed, H. M. M. “Modeling effects of Ti and Nb on phase transformation of low carbon steel.” International Conference on Mechanical, Industrial and Materials Engineering 2019 (ICMIME2019), 2019, pp. 408–410. https://icmime-ruet.ac.bd/2019/DIR/Contents/Technical%20Papers/Material%20Science/MS-17.pdf
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Mariana Valdez Vazquez, Martha Patricia Guerrero-Mata

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.