Effect of chemical composition on the processing of microalloyed steels

Authors

DOI:

https://doi.org/10.29105/ingenierias29.100-977

Keywords:

Microalloyed steels, thermomechanical processing, CCT, PTT, cooling

Abstract

This article presents the variables that influence thermomechanical and cooling processing, to create process routes that consider: chemical design, microstructural evolution optimization and process variables. From these parameters, low carbon steels with strengths above 1 GPa can be developed, by means of thermomechanical processing designed with constitutive equations and the Precipitation-Time-Temperature diagrams (PTT), considering the effect of chemical composition on dynamic recrystallization kinetics, this information will also enable the selection of processing parameters and different cooling paths from continuous cooling transformation diagrams (CCT).

Downloads

Download data is not yet available.

Author Biographies

Mariana Valdez Vazquez, Universidad Autónoma de Nuevo León

A Chemical Metallurgical Engineer, graduated from the Facultad de Química at the Universidad Nacional Autónoma de México (UNAM), with a Master of Science in Materials Engineering from the Institute of Materials Research at UNAM, and currently a Doctoral student in Materials Engineering at the Universidad Autónoma de Nuevo León (UANL), focusing on metallic materials in the hot rolling process of advanced steels. This thesis topic is being developed in collaboration with industry, specifically in the Research and Development area at TERNIUM. She received the ANFEI recognition and the Gabino Barreda medal in 2017, served as treasurer of the Material Advantage student chapter from 2015-2016, participated in short research stays assisting undergraduate and high school students, and presented at national and international conferences, resulting in four articles in conference proceedings and one article for a general audience.

Martha Patricia Guerrero-Mata, Universidad Autónoma de Nuevo León

Bachelor of Science in Physics, Master of Science in Mechanical Engineering with a specialization in Materials, both from the Universidad Autónoma de Nuevo León; Doctorate in Materials Engineering from the University of Sheffield in England. Since 1997, she has been a full-time research professor in the Facultad de Ingeniería Mecánica y Eléctrica from the Universidad Autónoma de Nuevo León. She has been a visiting professor at the Nancy School of Mines in France, the University of Ghent in Belgium, and the Colorado School of Mines in the United States. She has led research and technology projects funded by CONAHCYT (the Mexican National Council of Science and Technology), the European Economic Community, and the private sector. She has participated in over 150 national and international conferences, published 60 peer-reviewed articles, and has mentored 12 undergraduate students, 50 master's students, and 17 doctoral students. Her research areas include the mechanical properties of metallic materials, numerical simulation of forming, galvanizing, and hot-dip galvanizing processes, and welding. She is a member of the National System of Researchers, level II, has Prodep Profile recognition and is a Regular Member of the Mexican Academy of Sciences, head of the Mexican Academy of Engineering and member of the consolidated academic body “Processing of advanced metallic alloys”, member of the New York Academy of Science and Fellow of the Institute of Materials, Minerals and Mining of the United Kingdom.

References

1. Krauss, G. Steels: Processing, Structure, and Performance. 2.ª ed., ASM International, 2015. DOI: https://doi.org/10.31399/asm.tb.spsp2.9781627082655

2. Sun, L., Liu, X., Xu, X., et al. “Review on niobium application in microalloyed steel.” Journal of Iron and Steel Research International, vol. 29, 2022, pp. 1513–1525. https://doi.org/10.1007/s42243-022-00789-1 DOI: https://doi.org/10.1007/s42243-022-00789-1

3. Jiménez Lugos, J. C. Modelado de deformación en caliente de acero bajo carbono en la zona intercrítica. Tesis de maestría, Instituto Politécnico Nacional, 2017.

4. Nasiri, Z., Ghaemifar, S., Naghizadeh, M., & Mirzadeh, H. “Thermal Mechanisms of Grain Refinement in Steels: A Review.” Metals and Materials International, 2020. https://doi.org/10.1007/s12540-020-00700-1 DOI: https://doi.org/10.1007/s12540-020-00700-1

5. Dieter, G. E., Kuhn, H. A., & Semiatin, S. L. Handbook of Workability and Process Design. ASM International, 2003.

6. Gao, X., Wu, H., Liu, M., Zhang, Y., & Zhou, X. “Dynamic recovery and recrystallization behaviors of C71500 Copper-Nickel alloy under hot deformation.” Journal of Materials Engineering and Performance, vol. 29, no. 11, 2020, pp. 7678–7692. https://doi.org/10.1007/s11665-020-05221-x DOI: https://doi.org/10.1007/s11665-020-05221-x

7. Altamirano Guerrero, G. Estudio de la deformación plástica en caliente de aceros avanzados de ultra-alta resistencia (A-UHSS) microaleados con boro. Tesis doctoral, Universidad Michoacana de San Nicolás de Hidalgo, 2014. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/1298

8. Li, Y., Song, R., Wen, E., & Yang, F. “Hot deformation and dynamic recrystallization behavior of Austenite-Based Low-Density FE–MN–AL–C steel.” Acta Metallurgica Sinica (English Letters), vol. 29, no. 5, 2016, pp. 441–449. https://doi.org/10.1007/s40195-016-0406-1 DOI: https://doi.org/10.1007/s40195-016-0406-1

9. Cabrera, J., & Prado, J. “Simulación de la fluencia en caliente de acero mediante el uso de ecuaciones constitutivas.” Scientia Et Technica, vol. 2, no. 39, 2008, pp. 182–187. https://doi.org/10.22517/23447214.3181

10. Estrin, Y., & Mecking, H. “A unified phenomenological description of work hardening and creep based on one-parameter models.” Acta Metallurgica, vol. 32, no. 1, 1984, pp. 57–70. https://doi.org/10.1016/0001-6160(84)90202-5 DOI: https://doi.org/10.1016/0001-6160(84)90202-5

11. Bergström, Y. “A dislocation model for the stress-strain behaviour of polycrystalline α-Fe.” Materials Science and Engineering, vol. 5, no. 4, 1970, pp. 193–200. https://doi.org/10.1016/0025-5416(70)90081-9 DOI: https://doi.org/10.1016/0025-5416(70)90081-9

12. Jonas, J. J., Quelennec, X., Jiang, L., & Martin, É. “The Avrami kinetics of dynamic recrystallization.” Acta Materialia, vol. 57, no. 9, 2009, pp. 2748–2756. https://doi.org/10.1016/j.actamat.2009.02.033 DOI: https://doi.org/10.1016/j.actamat.2009.02.033

13. Li, K., Shao, J., Yao, C., et al. “Effect of NB-TI microalloyed steel precipitation behavior on hot rolling strip shape and FEM simulation.” Materials, vol. 17, no. 3, 2024, p. 651. https://doi.org/10.3390/ma17030651 DOI: https://doi.org/10.3390/ma17030651

14. Eskandari, H., Reihanian, M., & Zaree, S. A. “Constitutive Modeling, Processing Map Optimization, and Recrystallization Kinetics of high-grade X80 pipeline steel.” Journal of Materials Research and Technology, 2024. https://doi.org/10.1016/j.jmrt.2024.09.217 DOI: https://doi.org/10.1016/j.jmrt.2024.09.217

15. Sun, W. P., & Hawbolt, E. B. “Comparison between Static and Metadynamic Recrystallization.” ISIJ International, vol. 37, no. 10, 1997, pp. 1000–1009. https://doi.org/10.2355/isijinternational.37.1000 DOI: https://doi.org/10.2355/isijinternational.37.1000

16. Ding, S., et al. “Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization.” Journal of Materials Processing Technology, vol. 299, 2021, p. 117359. https://doi.org/10.1016/j.jmatprotec.2021.117359 DOI: https://doi.org/10.1016/j.jmatprotec.2021.117359

17. Palmiere, E. J., Mahfouf, M., & Pinna, C. International Conference on Thermomechanical Processing: Mechanics, Microstructure & Control: 23–26 June 2002, the University of Sheffield, England: Conference Proceedings. Department of Engineering Materials, University of Sheffield, 2003. https://books.google.com.mx/books?id=JI2oAAAACAAJ

18. Rios, P. R., Siciliano, F., Jr., Sandim, H. R. Z., Plaut, R. L., & Padilha, A. F. “Nucleation and growth during recrystallization.” Materials Research, vol. 8, no. 3, 2005, pp. 225–238. https://doi.org/10.1590/s1516-14392005000300002 DOI: https://doi.org/10.1590/S1516-14392005000300002

19. Skobir, D. A. “High-Strength Low-Alloy (HSLA) Steels.” Materials and Technology, vol. 45, 2011, pp. 295–301.

20. Cabrera, J. M., Omar, A. A., & Prado, J. M. “Simulación de la fluencia en caliente de un acero microaleado con un contenido medio de carbono. II parte. Recristalización dinámica: inicio y cinética.” Revista De Metalurgia, vol. 33, no. 3, 1997, pp. 143–152. https://doi.org/10.3989/revmetalm.1997.v33.i3.857 DOI: https://doi.org/10.3989/revmetalm.1997.v33.i3.857

21. Medina, S. F., Quispe, A., & Gómez, M. “Precipitation model in microalloyed steels both isothermal and continuous cooling conditions.” Revista De Metalurgia, vol. 51, no. 4, 2015, e056. https://doi.org/10.3989/revmetalm.056 DOI: https://doi.org/10.3989/revmetalm.056

22. Siciliano, F., & Jonas, J. J. “Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels.” Metallurgical and Materials Transactions A, vol. 31, no. 2, 2000, pp. 511–530. https://doi.org/10.1007/s11661-000-0287-8 DOI: https://doi.org/10.1007/s11661-000-0287-8

23. Zeng, Z., et al. “Effect of Nb content and thermal deformation on the microstructure and mechanical properties of high-strength anti-seismic rebar.” Materials Science and Engineering A, vol. 840, 2022, p. 142929. https://doi.org/10.1016/j.msea.2022.142929 DOI: https://doi.org/10.1016/j.msea.2022.142929

24. Primo, G. L. Efecto de los parámetros de laminación y post-tratamiento térmico por inducción en la mejora de propiedades mecánicas de aceros microaleados. Universidad de Navarra, 2017. https://dadun.unav.edu/bitstream/10171/45292/1/Gorka%20Larzabal.pdf

25. Wray, P. J. “Effect of composition and initial grain size on the dynamic recrystallization of austenite in plain carbon steels.” Metallurgical Transactions A, vol. 15, no. 11, 1984, pp. 2009–2019. https://doi.org/10.1007/bf02646835 DOI: https://doi.org/10.1007/BF02646835

26. Yang, Y., Zhao, X., Dong, C., & Zhao, X. “Influence of hot deformation and precipitates on the recrystallization of NB-V-TI Free-Cutting steel.” Metals, vol. 10, no. 12, 2020, p. 1587. https://doi.org/10.3390/met10121587 DOI: https://doi.org/10.3390/met10121587

27. Serajzadeh, S., & Taheri, A. K. “Effect of carbon on the kinetics of dynamic restoration and flow behavior of carbon steels.” Mechanics of Materials, vol. 35, no. 7, 2003, pp. 653–660. https://doi.org/10.1016/s0167-6636(02)00291-0 DOI: https://doi.org/10.1016/S0167-6636(02)00291-0

28. Lee, C. W., Seong, H. G., & De Cooman, B. C. “Effect of vanadium on the hot deformation behavior of Vanadium-Microalloyed steel for thin slab direct rolling.” Metallurgical and Materials Transactions A, vol. 47, no. 7, 2016, pp. 3649–3663. https://doi.org/10.1007/s11661-016-3512-9 DOI: https://doi.org/10.1007/s11661-016-3512-9

29. Kim, K., Du, L., Choe, H., Lee, T., & Lee, G. “Influence of vanadium content on hot deformation behavior of Low-Carbon boron microalloyed steel.” Acta Metallurgica Sinica (English Letters), vol. 33, no. 5, 2020, pp. 705–715. https://doi.org/10.1007/s40195-020-01005-3 DOI: https://doi.org/10.1007/s40195-020-01005-3

30. Mayo, U., Isasti, N., Rodriguez-Ibabe, J. M., & Uranga, P. “Interaction between Microalloying Additions and Phase Transformation during Intercritical Deformation in Low Carbon Steels.” Metals, vol. 9, no. 10, 2019, p. 1049. https://doi.org/10.3390/met9101049 DOI: https://doi.org/10.3390/met9101049

31. Mejía, I., Salas-Reyes, A., Bedolla-Jacuinde, A., Calvo, J., & Cabrera, J. “Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel.” Materials Science and Engineering A, vol. 616, 2014, pp. 229–239. https://doi.org/10.1016/j.msea.2014.08.030 DOI: https://doi.org/10.1016/j.msea.2014.08.030

32. Sun, W., Lu, C., Tieu, A., Jiang, Z., Liu, X., & Wang, G. “Influence of Nb, V and Ti on peak strain of deformed austenite in Mo-based micro-alloyed steels.” Journal of Materials Processing Technology, vols. 125–126, 2002, pp. 72–76. https://doi.org/10.1016/s0924-0136(02)00287-x DOI: https://doi.org/10.1016/S0924-0136(02)00287-X

33. Reyes-Calderón, F., Mejía, I., Boulaajaj, A., & Cabrera, J. “Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel.” Materials Science and Engineering A, vol. 560, 2012, pp. 552–560. https://doi.org/10.1016/j.msea.2012.09.101 DOI: https://doi.org/10.1016/j.msea.2012.09.101

34. Seo, E. J., Speer, J. G., Matlock, D. K., & Cryderman, R. L. “Effect of Mo in Combination with Nb on Austenite Grain Size Control in Vacuum Carburizing Steels.” Journal of Materials Engineering and Performance, vol. 29, no. 6, 2020, pp. 3575–3584. https://doi.org/10.1007/s11665-020-04751-8 DOI: https://doi.org/10.1007/s11665-020-04751-8

35. Lee, S., & Lee, Y. “Prediction of austenite grain growth during austenitization of low alloy steels.” Materials & Design (1980–2015), vol. 29, no. 9, 2008, pp. 1840–1844. https://doi.org/10.1016/j.matdes.2008.03.009 DOI: https://doi.org/10.1016/j.matdes.2008.03.009

36. Kumar, S., Aashranth, B., Samantaray, D., Davinci, M. A., Borah, U., & Bhaduri, A. “Influence of nitrogen on kinetics of dynamic recrystallization in Fe-Cr-Ni-Mo steel.” Vacuum, vol. 156, 2018, pp. 20–29. https://doi.org/10.1016/j.vacuum.2018.07.010 DOI: https://doi.org/10.1016/j.vacuum.2018.07.010

37. Serajzadeh, S., & Taheri, A. K. “An investigation of the silicon role on austenite recrystallization.” Materials Letters, vol. 56, no. 6, 2002, pp. 984–989. https://doi.org/10.1016/s0167-577x(02)00659-6 DOI: https://doi.org/10.1016/S0167-577X(02)00659-6

38. Cabañas, N., Penning, J., Akdut, N., & De Cooman, B. C. “High-temperature deformation properties of austenitic Fe-Mn alloys.” Metallurgical and Materials Transactions A, vol. 37, no. 11, 2006, pp. 3305–3315. https://doi.org/10.1007/bf02586165 DOI: https://doi.org/10.1007/BF02586165

39. Maruyama, N., Uemori, R., & Sugiyama, M. “The role of niobium in the retardation of the early stage of austenite recovery in hot-deformed steels.” Materials Science and Engineering A, vol. 250, no. 1, 1998, pp. 2–7. https://doi.org/10.1016/s0921-5093(98)00528-0 DOI: https://doi.org/10.1016/S0921-5093(98)00528-0

40. Abrahamson, E. P., & Blakeney, B. S. Jr. “The effect of dilute transition element additions on the recrystallization of Iron.” Transactions of the Metallurgical Society of AIME, vol. 218, 1960, pp. 1101–1104. DOI: https://doi.org/10.21236/AD0260489

41. Pohjonen, A., Somani, M., & Porter, D. “Effects of chemical composition and austenite deformation on the onset of ferrite formation for arbitrary cooling paths.” Metals, vol. 8, no. 7, 2018, p. 540. https://doi.org/10.3390/met8070540 DOI: https://doi.org/10.3390/met8070540

42. Álvarez Moreno, L. F. Transformaciones de inequilibrio producidas por ciclos anisotérmicos en aceros inoxidables martensíticos tipo 13Cr y 14CrMoV. Universidad Complutense de Madrid, 1991. http://hdl.handle.net/10261/110786

43. Zhang, M., Li, L., Fu, R., Krizan, D., & De Cooman, B. “Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels.” Materials Science and Engineering A, vols. 438–440, 2006, pp. 296–299. https://doi.org/10.1016/j.msea.2006.01.128 DOI: https://doi.org/10.1016/j.msea.2006.01.128

44. Li, Z., Wu, D., Lv, H., & Fang, S. “Continuous cooling transformation behaviour of C-SI-MN TRIP Steel.” Journal of Iron and Steel Research International, vol. 14, no. 5, 2007, pp. 277–281. https://doi.org/10.1016/s1006-706x(08)60094-1 DOI: https://doi.org/10.1016/S1006-706X(08)60094-1

45. Neugebauer, R., Rautenstrauch, A., & Garcia, E. M. “Influence of the alloying elements on phase transitions of high strength steels.” Advanced Materials Research, vol. 337, 2011, pp. 358–362. https://doi.org/10.4028/www.scientific.net/amr.337.358 DOI: https://doi.org/10.4028/www.scientific.net/AMR.337.358

46. Grina, O., Fonstein, N., Yakubovsky, O., Panahi, D., Bhattacharya, D., & Jansto, S. “The influence of Mo, Cr and B alloying on phase transformation and mechanical properties in Nb added high strength dual phase steels.” 7th Int. Conf. High Strength Low Alloy Steels (HSLA Steels 2015), Microalloying 2015, Offshore Eng. Steels 2015, vol. 1, 2015, pp. 237–245. https://doi.org/10.1007/978-3-319-48767-0_24 DOI: https://doi.org/10.1002/9781119223399.ch24

47. Ali, N., & Al Rashed, H. M. M. “Modeling effects of Ti and Nb on phase transformation of low carbon steel.” International Conference on Mechanical, Industrial and Materials Engineering 2019 (ICMIME2019), 2019, pp. 408–410. https://icmime-ruet.ac.bd/2019/DIR/Contents/Technical%20Papers/Material%20Science/MS-17.pdf

Published

2026-01-29

How to Cite

Valdez Vazquez, M., & Guerrero-Mata, M. P. (2026). Effect of chemical composition on the processing of microalloyed steels. Revista Ingenierías, 29(100), 16–29. https://doi.org/10.29105/ingenierias29.100-977

Issue

Section

Artículos