Exploring the Ocean Through Soundscapes

Authors

  • Jennifer L. Miksis-Olds School of Marine Science and Ocean Engineering University of New Hampshire
  • Bruce Martin JASCO Applied Sciences
  • Peter L. Tyack Sea Mammal Research Unit Scottish Oceans Institute School of Biology University of St Andrews

DOI:

https://doi.org/10.29105/ingenierias24.91-21

Keywords:

Ocean soundscapes, acoustic signals in the oceans

Abstract

Listening to underwater soundscapes helps us understand how ocean physics and the biology of marine communities are responding to a dynamically changing ocean.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Jennifer L. Miksis-Olds, School of Marine Science and Ocean Engineering University of New Hampshire

She is a research professor and associate director of research at the School of Marine Science
and Ocean Engineering, University of New Hampshire, Durham. Her research employs acoustic methodologies to answer biological questions in the marine environment. Her primary interests include patterns and trends in ocean sound, animal behavior and communication, and the effect of anthropogenic activities on animals and their environment. Aspects of acoustics, biology, oceanography, and engineering are combined to create the interdisciplinary approach necessary
to extend the remote study of the ocean and of animals in their natural environment beyond where it is today.

Bruce Martin, JASCO Applied Sciences

He has been working in acoustic data collection and analysis since 1991. From 1991 to 2007, he was
involved with the development of combined active-passive sonars. In 2007, he switched to environmental acoustics and soundscapes. He has worked on numerous projects including the Chukchi Sea acoustic monitoring project (2007-2014), Tappan Zee pile-driving acoustic monitoring projects
(2010-2014), and a wide-area monitoring program on Canada’s East Coast (2015-2018). He is pursuing a PhD at Dalhousie University, Halifax, Canada, where his research interest is in soundscape ecology, especially automated techniques for quantifying sources in the soundscape.

Peter L. Tyack, Sea Mammal Research Unit Scottish Oceans Institute School of Biology University of St Andrews

He is a professor of marine mammal biology at the University of St Andrews, Scotland. His research focuses on behavioral ecology, acoustic communication, and social behavior in marine mammals. He has studied reproductive advertisement in baleen whales, individually distinctive contact calls, and echolocation in deepdiving toothed whales. He has developed new methods to sample behavior continuously from marine mammals, including the development of sound-and-orientation recording
tags. He has developed a series of studies on responses to anthropogenic sounds, including the effects of oil exploration on baleen and sperm whales and the effects of naval sonar on toothed whales.

References

Jennings, P., and Cain, R. (2013). A framework for improving urban sound- scapes. Applied Acoustics 74(2), 293-299. DOI: https://doi.org/10.1016/j.apacoust.2011.12.003

De la Estrategia de Ruido Oceánico de la NOAA. Disponible en http://acousticstoday.org/nefsc

van Opzeeland, I. C., and Miksis-Olds, J. L. (2012). Acoustic ecology of pinnipeds in polar habitats. In Eder, D. L. (Ed.), Aquatic Animals: Biology, Habitats, and Threats. Nova Science Publishers, Inc., New York, pp. 1-52.

Hawkins, A. D., and Popper, A. N. (2017). A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES Journal of Marine Science 74, 635-651. DOI: https://doi.org/10.1093/icesjms/fsw205

Mann, D. A. (2012). Remote sensing of fish using passive acoustic monitor- ing. Acoustics Today 8(3), 8-15. DOI: https://doi.org/10.1121/1.4753916

Au, W. W. L., and Lammers, M. O. (Eds). (2016). Listening in the Ocean. Springer-Verlag, New York. DOI: https://doi.org/10.1007/978-1-4939-3176-7

Miksis-Olds, J. L., Stabeno, P. J., Napp, J. M., Pinchuk, A. I., Nystuen, J. A., Warren, J. D., and Denes, S. L. (2013a). Ecosystem response to a temporary sea ice retreat in the Bering Sea. Progress in Oceanography 111, 38-51. DOI: https://doi.org/10.1016/j.pocean.2012.10.010

Staaterman, E., Paris, C. B., DeFerrari, H. A., Mann, D. A., Rice, A. N., and D’Alessandro, E. K. (2014). Celestial patterns in marine soundscapes. Ma- rine Ecology Progress Series 508, 17-32. DOI: https://doi.org/10.3354/meps10911

McWilliam, J. N., and Hawkins, A. D. (2013). A comparison of inshore marine soundscapes. Journal of Experimental Marine Biology and Ecology 446, 166-176. DOI: https://doi.org/10.1016/j.jembe.2013.05.012

Parks, S. E., Miksis-Olds, J. L., and Denes, S. L. (2014). Assessing marine ecosystem acoustic diversity across ocean basins. Ecological Informatics 21, 81-88. DOI: https://doi.org/10.1016/j.ecoinf.2013.11.003

Harris, S. A., Shears, N. T., and Radford, C. A. (2016). Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods in Ecology and Evolution 7, 713-724. DOI: https://doi.org/10.1111/2041-210X.12527

Slabbekoorn, H., and Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour 76, e5-e8. DOI: https://doi.org/10.1016/j.anbehav.2008.06.010

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., and Pieretti, N. (2011).

Soundscape ecology: The science of sound in the landscape. BioScience 61, 203-216. DOI: https://doi.org/10.1525/bio.2011.61.3.6

Soundscape Ecology of the Anthropocene – Hans Slabbekoorn

Able, K. P. (1980). Mechanisms of orientation, navigation, and homing. In Gauthreaux, S. A., Jr. (Ed.), Animal Migration, Orientation, and Navigation. Academic Press, New York, pp. 283-373. DOI: https://doi.org/10.1016/B978-0-08-091833-4.50010-9

Kenney, R. D., Mayo, C. A., and Winn, H. E. (2001). Migration and foraging strategies at varying spatial scales in western North Atlantic right whales: A review of hypothesis. Journal of Cetacean Research Management 2, 251- 260. DOI: https://doi.org/10.47536/jcrm.vi.283

Miksis-Olds, J. L., and Madden, L. E. (2014). Environmental predictors of ice seal presence in the Bering Sea. PLoS ONE 9, e106998. DOI: https://doi.org/10.1371/journal.pone.0106998

Stanley, J. A., Radford, C. A., and Jeffs, A. G. (2011). Behavioural response thresholds in New Zealand crab megalopae to ambient underwater sound. PLoS ONE 6, e28572. DOI: https://doi.org/10.1371/journal.pone.0028572

Simpson, S. D., Meekan, M. G., Jeffs, A., Montgomery, J. C., and McCauley, R. D. (2008). Settlement-stage coral reef fish prefer the higher-frequency invertebrate-generated audible component of reef noise. Animal Behaviour 75, 1861-1868. DOI: https://doi.org/10.1016/j.anbehav.2007.11.004

Sueur, J., Pavoine, S., Hamerlynck, O., and Duvail, S. (2008). Rapid acoustic survey for biodiversity appraisal. PLoS ONE 3, e4065. DOI: https://doi.org/10.1371/journal.pone.0004065

Stanley, J. A., Radford, C. A., and Jeffs, A. G. (2012). Location, location, lo- cation: Finding a suitable home among the noise. Proceedings of the Royal Society of London B: Biological Sciences 270, 3622-3631. DOI: https://doi.org/10.1098/rspb.2012.0697

Ross, D. (2005). Ship sources of ambient noise. IEEE Journal of Ocean Engineering 30, 257-261. DOI: https://doi.org/10.1109/JOE.2005.850879

McDonald, M. A., Hildebrand, J. A., and Wiggins, S. M. (2006). Increases in deep ocean ambient noise in the Northwest Pacific west of San Nicolas Island, California. The Journal of the Acoustical Society of America 120, 711-717. DOI: https://doi.org/10.1121/1.2216565

Chapman, N. R., and Price, A. (2011). Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. The Journal of the Acoustical Society of America 129, EL161-EL165. DOI: https://doi.org/10.1121/1.3567084

Andrew, R. K., Howe, B. M., and Mercer, J. A. (2011). Long-time trends in ship traffic noise for four sites off the North American West Coast. The Journal of the Acoustical Society of America 129, 642-651. DOI: https://doi.org/10.1121/1.3518770

Ross, D. (1993). On ocean underwater ambient noise. Acoustic Bulletin 18, 5-8.

Boyd, I. L., Frisk, G., Urban, E., Tyack, P., Ausubel, J., Seeyave, S., Cato, D., Southall, B., Weise, M., Andrew, R., Akamatsu, T., Dekeling, R., Erbe, C., Farmer, D., Gentry, R., Gross, T., Hawkins, A., Li, F., Metcalf, K., Miller, J. H., Moretti, D., Rodrigo, C., and Shinke, T. (2011). An International Quiet Ocean Experiment. Oceanography 24, 174-181. DOI: https://doi.org/10.5670/oceanog.2011.37

Tyack, P. L. (2008). Implications for marine mammals of large-scale changes in the marine acoustic environment. Journal of Mammalogy 89, 549-558. DOI: https://doi.org/10.1644/07-MAMM-S-307R.1

Dziak, R., Fowler, M. J., Matsumoto, H., Bohnenstiehl, D. R., Park, M., Warren, K., and Lee, W. S. (2013). Life and death sounds of iceberg A53a. Oceanography 26, 10-12. DOI: https://doi.org/10.5670/oceanog.2013.20

Miksis-Olds, J. L., Bradley, D. L., and Niu, X. M. (2013b). Decadal trends in Indian Ocean ambient sound. The Journal of the Acoustical Society of America 134, 3464-3475. DOI: https://doi.org/10.1121/1.4821537

Miksis-Olds, J. L., and Nichols, S. M. (2016). Is low frequency ocean sound in- creasing globally? The Journal of the Acoustical Society of America 139, 501- 511. DOI: https://doi.org/10.1121/1.4938237

Aulanier, F., Simard, Y., Roy, N., Gervaise, C., and Bandet, M. (2017). Effects of shipping on marine acoustic habitats in Canadian Arctic estimated via probabilistic modeling and mapping. Marine Pollution Bulletin 125(1-2), 115-131. DOI: https://doi.org/10.1016/j.marpolbul.2017.08.002

Popper, A. N., Hawkins, A. D., Fay, R. R., Mann, D. A., Bartol, S., Carlson, T. J., Coombs, S., Ellison, W. T., Gentry, R. L., Halvorsen, M. B., Lokkeborg, S., Rogers, P., Southall, B. L., Zeddies, D. G., and Tavolga, W. N. (2014). ASA S3/SC1.4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI. Springer International Publishing, Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-319-06659-2

National Marine Fisheries Service (NMFS). (2016). Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. NOAA Technical Memorandum NMFS-OPR-55, NOAA, US Department of Commerce, Silver Spring, MD. Available at http://acousticstoday.org/noaaagt. Accessed October 16, 2017.

Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene, C. R., Jr., Kastak, D., Ketten, D. R., Miller, J. H., Nachtigall, P. E., and Richardson, W. J. (2007). Marine mammal noise exposure criteria: Initial scientific recommendations. Aquatic Mammals 33(4), 411-521. DOI: https://doi.org/10.1578/AM.33.4.2007.411

Published

2021-07-30

How to Cite

Miksis-Olds, J. L., Martin, B., & Tyack, P. L. (2021). Exploring the Ocean Through Soundscapes. Revista Ingenierías, 24(91), 33–48. https://doi.org/10.29105/ingenierias24.91-21

Funding data