La derivada conformable y sus aplicaciones en ingeniería

Authors

  • Jesús Gabino Puente-Córdova Autonomous University of Nuevo León image/svg+xml

DOI:

https://doi.org/10.29105/ingenierias23.88-3

Keywords:

Differential equation, fractional calculus, modeling, conformable derivative

Abstract

In this work some applications of the conformable derivative in the solution of fractional order differential equations are described. Derivatives of non- integer order are presented as a function of time to solve Maxwell’s model, the series RC electric circuit and Newton’s law of cooling. The results obtained show the variation of the alpha parameter of the conformable fractional operator to model the behavior of the proposed phenomena. It is obtained that the parameters stress, electric current and temperature as a function of time, show a more pronounced decay as α decreases. The conformable derivative is a mathematical tool that allows you to solve fractional order differential equations in a simpler way.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hilfer, R. Applications of Fractional Calculus in Physics. Universität Mainz & Universität Stuttgart, Germany, 2000.

Baleanu, D. New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010.

Das,S.KindergartenofFractionalCalculus.CambridgeScholarsPublishing, 2020.

Sánchez-Muñoz,J.M.Génesisydesarrollodelcálculofraccional.Pensamiento Matemático, 1, 2011, 15 pp.

Reyes-Melo, M.E., González-González, V.A., Guerrero-Salazar, C.A., García-Cavazos, F., Ortiz-Méndez, U. Application of fractional calculus to the modeling of the complex rheological behavior of polymers: From the glass transition to flow behavior. I. The theoretical model. Journal of Applied Polymer Science, 108, 2008, 731-737.

Buesaquillo-Gómez V.G., Pérez-Riascos A., Rugeles-Pérez A. Cálculo fraccional. Revista de Ciencias, 4 (1), 2014, 16 pp.

Capelas-deOliveira,E.,Tenreiro-Machado,J.A.Areviewofdefinitionsfor fractional derivatives and integral. Mathematical Problems in Engineering, 2014, 6 pp.

Sales-Teodoro, G., Tenreiro-Machado J.A., Capelas-de Oliveira, E. A review of definitions of fractional derivatives and other operators. Journal of Computational Physics, 388, 2019, 195-208.

Caputo, M., Fabrizio, M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1 (2), 2015, pp. 1-13.

Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv:1602.03408, 2016.

Shukla, A.K., Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336, 2007, 797-811.

Khalil, R., Al Horani, M., Yousef, A., Sababheh, M. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 2014, 65-70.

Martínez, L., Rosales, J.J., Carreño, C.A., Lozano, J.M. Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 2018, 1-10.

Abdeljawad, T. On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 2015, 57-66.

Chung, W.S. Fractional Newton mechanics with conformable fractional derivative. Journal of Computational and Applied Mathematics, 290, 2015, 150-158.

Xua, H., Jiang, X. Creep constitutive models for viscoelastic materials based on fractional derivatives. Computers and Mathematics with Applications, 73, 2017, 1377-1384.

Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Mathematical Modelling of Natural Phenomena, 14, 2019, 34 pp.

Gómez-Aguilar, J.F., Razo-Hernández, R., Granados-Lieberman, D. A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Revista Mexicana de Física, 60, 2014, 32-38.

Rosales-García, J., Andrade-Lucio, J.A., Shulika, O. Conformable derivative applied to experimental Newton’s law of cooling. Revista Mexicana de Física, 66 (2), 2020, 224-227.

Alvarez, F., Alegria, A., Colmenero, J. Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Physical Review B, 44, 7306, 1991.

Lukichev, A. Physical meaning of the stretched exponential Kohlrausch function. Physics Letters A, 383 (24), 2019, 2983-2987.

Das-Gupta, D.K. Polyethylene: Structure, morphology, molecular motion and dielectric property behavior. IEEE Electrical Insulation Magazine, 10 (3), 1994, 5-15.

Frank, A. Dielectric characterization. TA Instruments USA, APN032, 2012, 10 pp.

Ortega, A., Rosales, J.J. Newton’s law of cooling with fractional conformable derivative. Revista Mexicana de Física, 64, 2018, 172-175.

Mondol, A., Gupta, R., Das, S., Dutta, T. An insight into Newton’s cooling law using fractional calculus. Journal of Applied Physics, 123, 06490, 2018, 9 pp.

Ebaid, A., Masaedeh, B., El-Zahar, E. A New fractional model for the falling body problem. Chinese Physics Letters, 34 (2), 2017, 3 pp.

Abdelhakim, A.A., Tenreiro-Machado, J.A. A critical analysis of the conformable derivative. Nonlinear Dynamics, 95, 2019, 3063-3073.

Anderson, D.R., Camrud, E., Ulness, D.J. On the nature of the conformable derivative and its applications to physics. Journal of Fractional Calculus and Applications, 10 (2), 2019, 92-135.

Published

2020-07-12

How to Cite

Puente-Córdova, J. G. (2020). La derivada conformable y sus aplicaciones en ingeniería. Revista Ingenierías, 23(88), 20–31. https://doi.org/10.29105/ingenierias23.88-3