Evaluación de la actividad fotocatalítica de compósitos ZnS-rGO
DOI:
https://doi.org/10.29105/ingenierias23.86-4Keywords:
Reduced graphene oxide, zinc sulfide, rhodamine B, photocatalysis, compositesAbstract
In this work the obtaining of ZnS-rGO composites is reported by precipitation of zinc sulfide particles within previously obtained aqueous dispersions of reduced graphene oxide. ZnS particles and ZnS-rGO composites were characterized by X-ray diffraction, Uv-Vis spectroscopy, scanning electron microscopy, and surface area analysis. The photocatalytic activity of the composite was analyzed by degrading aqueous solutions of rodamine B radiating with Xenon light. It was observed a decrease on the reaction half-life time of the organic pollutant from 270 to 147min, compared to the particles of neat ZnS.
Downloads
References
Connor,R.,TheUnitedNationsworldwaterdevelopmentreport2015:water for a sustainable world. Vol. 1. 2015: UNESCO Publishing.
Estadísticas del agua en México. Comisión Nacional del Agua. 2017.
Martínez,A.C.,etal.,Contaminacióngeneradaporcolorantesdelaindustria textil. 2010, Universidad Autónoma del Estado de Hidalgo.
Cheremisinoff, N.P., Handbook of water and wastewater treatment technologies. 2001: Butterworth-Heinemann.
Poyatos,J.M.,etal.,Advancedoxidationprocessesforwastewatertreatment: state of the art. Water, Air, and Soil Pollution, 2010. 205(1-4): p. 187.
Azimi,H.R.,etal.,Excellentphotocatalyticperformanceundervisible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method. Frontiers of Materials Science, 2016. 10(4): p. 385-393.
Golsheikh, A.M., et al., Sonochemical synthesis of reduced graphene oxide uniformly decorated with hierarchical ZnS nanospheres and its enhanced photocatalytic activities. RSC Advances, 2015. 5(17): p. 12726-12735.
Chen, F., et al., Solid-state synthesis of ZnS/graphene nanocomposites with enhanced photocatalytic activity. Dyes and Pigments, 2015. 120: p. 8-14.
FloresJerónimo,G.,Incrementoenlaactividadfotocatalíticadenanopartículas de ZnS mediante la incorporación de rGO por química verde. 2019, Universidad Autónoma de Nuevo León.
Jerónimo, G.F., et al., Química verde en la síntesis de rGO partiendo de la exfoliación electroquímica del grafito. Ingenierías, 2019. 22(83): p. 55.
Levenspiel, O., Chemical Reaction Engineering. Third ed. 1999, United States of America: John Wiley & Sons. 668.
Khan, S., et al., ZnS Nano‐Spheres Formed by the Aggregation of Small Crystallites and Their Photocatalytic Degradation of Eosin B. Chinese Journal of Chemistry, 2017. 35(2): p. 159-164.
Mahvelati-Shamsabadi, T. and E.K. Goharshadi, ZnS nanospheres/reduced graphene oxide photoanode for highly efficient solar water oxidation. Solar Energy, 2018. 161: p. 226-234.
Mahvelati-Shamsabadi, T., et al., ZnS@ reduced graphene oxide nanocomposite as an effective sunlight driven photocatalyst for degradation of reactive black 5: A mechanistic approach. Separation and Purification Technology, 2018. 202: p. 326-334.
Pan, S. and X. Liu, ZnS–graphene nanocomposite: synthesis, characterization and optical properties. Journal of Solid State Chemistry, 2012. 191: p. 51-56.
Ibañez, J.G., O. Solorza, and E. Gomez-del-Campo, Preparation of semiconducting materials in the laboratory: Production of CdS thin films and estimation of their band gap energy. Journal of Chemical Education, 1991. 68(10): p. 872.
Brunauer, S., et al., On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 1940. 62(7): p. 1723-1732.
Sing, K.S. and R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology, 2004. 22(10): p. 773-782.