Polyolefins reinforced with reduced graphene oxide. Viscoelastic measurements

Authors

DOI:

https://doi.org/10.29105/ingenierias25.92-52

Keywords:

Graphene, Composites, Viscoelasticity, High Density Polyethylene, Polypropylene

Abstract

The effect of the reduced graphene oxide and the Poly-Ethylene Oxide on the viscoelastic properties of HDPE and PP are analyzed. The results of the dynamic viscosity are very similar in all cases. Using percentages of rGO of 0.1% with 2% of PEO, obtained values of elastic modulus for composite are four times than that of neat HDPE and three times than neat PP modulus. With 0.5% of rGO in both composites, maintaining the same percentage of PEO, the elastic module obtained is three times larger than those for two neat polyolefins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Carlos A. Guerrero Salazar, Universidad Autónoma de Nuevo León

Research Professor assigned to the postgraduate course in Materials Engineering at FIME. Member of the Mexican Academy of Sciences, has the Prodep Profile. He has more than 50 articles in indexed journals and more than 800 citations to his works.

Mayra Llamas Hernández, Universidad Autónoma de Nuevo León

PhD in Automation from the University of Bourgogne et Franche-Comté, France. PhD in Materials Engineering from UANL, Mexico. Master of Science in Mechanical Engineering with a specialty in Materials from the UANL in conjunction with l'Ecole Polytechnique de Montréal, Canada. Mechatronics Engineer from UANL. Currently collaborating in the research and development center, Schneider Electric.

Antonio Elizondo Martínez, Universidad Autónoma de Nuevo León

He studied at the Faculty of Mechanical and Electrical Engineering (UANL). During postgraduate studies, I work on the characterization of composite polymeric materials reinforced with graphene and carbon derivatives.

M. Edgar Reyes Melo, Universidad Autónoma de Nuevo León

Engineer in Food Industries (UANL). Master of Science in Mechanical Engineering, specialty in Materials (UANL). PhD in Materials Science, Paul Sabatier University, Toulouse, France. UANL Research Award in 1999, 2004, 2009, 2011 and 2012. UANL Research Professor. SNI level II. Member of the Mexican Academy of Sciences.

Tania E. Guerrero Salas, Universidad Autónoma de Nuevo León

Professor assigned to the area of ​​Basic Sciences of FIME, currently writing her thesis that will lead her to obtain the degree of Doctor of Engineering with orientation in Materials. It has several peer-reviewed scientific articles as well as a couple indexed.

References

Cornelia Vasile, Handbook of Polyolefins. 2nd Ed., Revised and Expanded, Marcel Dekker, New York, USA (2000). DOI: https://doi.org/10.1201/9780203908716

Andrew J. Peacock, Handbook of Polyethylene. Structures, Properties and Applications, Marcel Dekker, New York, USA (2000). DOI: https://doi.org/10.1201/9781482295467

Clive Maier, Teresa Calafut, Polypropylene. The Definitive User’s Guide and Databook, Plastic Design Library, New York, USA (1998).

Ehsan Bafekrpour (Ed.), Advanced Composite Materials: Properties and Applications, De Gruyter Open Ltd, Berlin, Germany (2017). DOI: https://doi.org/10.1515/9783110574432

Deborah D. L. Chung, Composite Materials. Science and Applications. 2nd Ed., Springer Verlag, London (2010).

Klaus Friedrich, Stoyko Fakirov, Zhong Zhang, Polymer Composites. From Nano to Macro Scale, Springer, New York, USA (2005). DOI: https://doi.org/10.1007/b137162

I. Krupa, I. Novák, I. Chodák, Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties, Synthetic Metals 145 (2004) 245–252. DOI: https://doi.org/10.1016/j.synthmet.2004.05.007

A Marcincin et al, Spinning, structure and properties of PP/CNTs and PP/carbon black composite fibers, 2014 IOP Conf. Ser.: Mater. Sci. Eng. 64 012004. DOI: https://doi.org/10.1088/1757-899X/64/1/012004

Zdenko Spitalsky, Dimitrios Tasisb, Konstantinos Papagelis, Costas Galiotis, Carbon nanotube polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science 35 (2010) 357–401. DOI: https://doi.org/10.1016/j.progpolymsci.2009.09.003

Maziyar Sabet, Hassan Soleimani, Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes 2014 IOP Conf. Ser.: Mater. Sci. Eng. 64 012001. DOI: https://doi.org/10.1088/1757-899X/64/1/012001

Saibom Park, Siyao He, Jianeng Wang, Andreas Stein, Christopher W. Macosko, Graphene-polyethylene nanocomposites: Effect of graphene functionalization, Polymer 104 (2016) 1-9. DOI: https://doi.org/10.1016/j.polymer.2016.09.058

Huanmin Li, Xu-Ming Xie, Polyolefin-functionalized graphene oxide and its GO/HDPE nano-composite with excellent mechanical properties, Chinese Chemical Letters 29 (2018) 161–165.

Bin Wang, Dan Peng, Ruihua Lv, Bing Na, Hesheng Liu, Zhong Yu, Generic melt compounding strategy using reactive graphene towards high performance polyethylene/graphene nanocomposites, Composites Science and Technology 177 (2019) 1–9 DOI: https://doi.org/10.1016/j.compscitech.2019.04.013

Muhammad Z. Iqbal, Ahmed A. Abdala, Vikas Mittal, Sӧnke Seifert, Andrew M. Herring, Matthew W. Liberatore, Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure, Polymer 98 (2016) 143-155. DOI: https://doi.org/10.1016/j.polymer.2016.06.021

Hongyu Chen, Valeriy V. Ginzburg, Jian Yang, Yunfeng Yang, Wei Liu,Yan Huang, Libo Du, Bin Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications, Progress in Polymer Science 59 (2016) 41–85. DOI: https://doi.org/10.1016/j.progpolymsci.2016.03.001

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys (2009) Vol. 81, No. 1 pp 109-162 DOI: https://doi.org/10.1103/RevModPhys.81.109

Carlos A. Guerrero Salazar, Paloma B. Jiménez Vara, Virgilio A. González González, Tania E. Guerrero Salas, Composites de polietilen tereftalato (PET) con óxido de grafeno reducido (rGO), a ser publicado en Ingenierías (2019).

Mayra I. Llamas Hernández, Carlos A. Guerrero Salazar, Martín E. Reyes Melo, Juan F. Luna Martínez, Comportamiento elástico y morfológico de compuestos polipropileno-grafeno, Ingenierías (2015) Vol XVIII, 68, pp 32-40

Daniela C. Marcano, Dmitry V. Kosynkin, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, Lawrence B. Alemany, Wei Lu, James M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano, Vol. 4, No. 8, 4806-4814, 2010. DOI: https://doi.org/10.1021/nn1006368

Hua Bai, Chun Li, Gaoquan Shi, Functional Composite Materials Based on Chemically Converted Graphene, Adv. Mater. 2011, 23, 1089–1115. DOI: https://doi.org/10.1002/adma.201003753

Jianfeng Shen, Yizhe Hu, Min Shi, Xin Lu, Chen Qin, Chen Li, Mingxin Ye, Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets, Chem. Mater. 2009, 21, 3514–3520. DOI: https://doi.org/10.1021/cm901247t

L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, Journal of Electron Spectroscopy and Related Phenomena 195 (2014) 145–154. DOI: https://doi.org/10.1016/j.elspec.2014.07.003

D.P. Hansora, N.G. Shimpi, S. Mishra, Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications, JOM, Vol. 67, No. 12, 2015, pp 2855-2868. DOI: https://doi.org/10.1007/s11837-015-1522-5

Huanmin Li, Xu-Ming Xie, Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties, Chinese Chemical Letters 29 (2018) 161–165. DOI: https://doi.org/10.1016/j.cclet.2017.06.001

Published

2022-01-30

How to Cite

Guerrero Salazar, C. A., Llamas Hernández, M., Elizondo Martínez, A., Reyes Melo, M. E., & Guerrero Salas, T. E. (2022). Polyolefins reinforced with reduced graphene oxide. Viscoelastic measurements. Revista Ingenierías, 25(92), 3–14. https://doi.org/10.29105/ingenierias25.92-52