Electronic performance of chaotic systems: Part 3, in digital systems
DOI:
https://doi.org/10.29105/ingenierias26.94-788Keywords:
Chaotic systems, Euler’s discretization, arduinoAbstract
In the first parts of this work, the electronic realization with analog circuits of some continuous quadratic and piecewise linear chaotic systems was shown, using circuits with operational amplifiers and other components, as well as the equivalence of their electronic variables with the established mathematical models. In this third part, discretization of dynamic systems is applied for the implementation of these chaotic systems in the Arduino open-source platform, thus offering simplicity and versatility for digital applications. Finally, results of its chaotic behavior and numerical equivalence with continuous mathematical models are illustrated.
Downloads
References
Chiu, R., Mora-González, M., and Lopez-Mancilla, D. Osciladores Caóticos implementados en Microcontrolador PIC18F. Nova scientia. (2013) 6(12): 60-77. DOI: https://doi.org/10.21640/ns.v6i12.24
Valcárcel, S. Generación de Secuencias Caóticas para CDMA. Tesis, Universidad Politécnica de Madrid. (2003).
Méndez-Ramírez, R., Cruz-Hernández, C., Arellano-Delgado, A. and Martínez-Clark, R. A new simple chaotic Lorenz-type system and its digital realization using a TFT touch-screen display embedded system. Complexity, 2017(6820492): 1–13. DOI: https://doi.org/10.1155/2017/6820492
Méndez-Ramírez, R. Implementación de osciladores caóticos en sistemas embebidos y aplicaciones. Tesis de doctorado. Centro de Investigación Científica y de Educación Superior de Ensenada, 2018.
Platas-Garza, M.A., Zambrano-Serrano, E., Rodríguez-Cruz, J.R., Posadas-Castillo, C. Implementation of an encrypted-compressed image wireless transmission scheme based on chaotic fractional-order systems. Chinese Journal of Physics, 2020, In Press: https://doi.org/10.1016/j.cjph.2020.11.014 DOI: https://doi.org/10.1016/j.cjph.2020.11.014
Lorenz, E.N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, (1963) 20: 130-141. DOI: https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Lü, J. and Chen, G. A New Chaotic Attractor Coined. International Journal of Bifurcation and Chaos, (2002) 12, 659-661. DOI: https://doi.org/10.1142/S0218127402004620
Chen, G. and Ueta, T. Yet Another Chaotic Attractor. International Journal of Bifurcation and Chaos, (1999) 9, 1465-1466. DOI: https://doi.org/10.1142/S0218127499001024
Rössler, O. E. An equation for continuous chaos. Physics Letters A. (1976) 57(5): 397-398. DOI: https://doi.org/10.1016/0375-9601(76)90101-8
Pehli̇van İ, Kurt E, Lai̇ Q, Basaran A, Kutlu M. A Multiscroll Chaotic Attractor and its Electronic Circuit Implementation, Chaos Theory and Applications. 2019; 1(1): 29-37.
Malasoma, J.M. A new class of minimal chaotic flows. Physics Letters A, 2002; 305: 52-58. DOI: https://doi.org/10.1016/S0375-9601(02)01412-3
Zanin M, Sevilla-Escoboza JR, Jaimes-Reátegui R, García-López JH, Huerta-Cuellar G, Pisarchik AN. Synchronization attack to chaotic communication systems. Discontinuity, Nonlinearity, and Complexity. (2013) 1: 333-343. DOI: https://doi.org/10.5890/DNC.2013.11.003
Matsumoto, T. A Chaotic Attractor from Chua’s Circuit. IEEE Trans. Circuits Syst. (1984) 31(12): 1055-1058. DOI: https://doi.org/10.1109/TCS.1984.1085459
Sprott, J.C. A new class of chaotic circuit. Physics Letters A, 2000; 266: 19-23. DOI: https://doi.org/10.1016/S0375-9601(00)00026-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Francisco Antonio Rodríguez Cruz, César de Jesús Chacón Rendón, Angel Rodriguez-Liñan
This work is licensed under a Creative Commons Attribution 4.0 International License.