Electronic performance of chaotic systems: Part 3, in digital systems

Authors

DOI:

https://doi.org/10.29105/ingenierias26.94-788

Keywords:

Chaotic systems, Euler’s discretization, arduino

Abstract

In the first parts of this work, the electronic realization with analog circuits of some continuous quadratic and piecewise linear chaotic systems was shown, using circuits with operational amplifiers and other components, as well as the equivalence of their electronic variables with the established mathematical models. In this third part, discretization of dynamic systems is applied for the implementation of these chaotic systems in the Arduino open-source platform, thus offering simplicity and versatility for digital applications. Finally, results of its chaotic behavior and numerical equivalence with continuous mathematical models are illustrated.

Downloads

Download data is not yet available.

Author Biographies

Francisco Antonio Rodríguez Cruz, Universidad Autónoma de Nuevo León

He is a student in the Electronics and Automation Engineer program at the Facultad de Ingeniería Mecánica y Eléctrica, de la Universidad Autónoma de Nuevo León.

César de Jesús Chacón Rendón, Universidad Autónoma de Nuevo León

Technical Bachelor in Design and Visual Communication (2016), at the Escuela Industrial y Preparatoria Técnica Pablo Livas. He is a student of the Electronics and Automation Engineer program, at the Facultad de Ingeniería Mecánica y Eléctrica, de la Universidad Autónoma de Nuevo León.

Angel Rodriguez-Liñan, Universidad Autónoma de Nuevo León

Electronics and Communications Engineer (2003), Master of Science in Electrical Engineering with a specialty in Control (2005) and PhD in Electrical Engineering (2009) from FIME, UANL. He belongs to the Mechatronics Technology and Innovation Academic Body. Since 2005 he has been a professor at FIME, since 2009 a Full-Time Professor at the Center for Innovation, Research and Development in Engineering and Technology, and since 2012 at the FIME Postgraduate Program. He obtained the 2009 UANL Research Award. Since 2011 he has been recognized by PRODEP and SNI. His areas of interest are analysis, estimation and control of dynamic systems, robotics and biomechatronics.

References

Chiu, R., Mora-González, M., and Lopez-Mancilla, D. Osciladores Caóticos implementados en Microcontrolador PIC18F. Nova scientia. (2013) 6(12): 60-77. DOI: https://doi.org/10.21640/ns.v6i12.24

Valcárcel, S. Generación de Secuencias Caóticas para CDMA. Tesis, Universidad Politécnica de Madrid. (2003).

Méndez-Ramírez, R., Cruz-Hernández, C., Arellano-Delgado, A. and Martínez-Clark, R. A new simple chaotic Lorenz-type system and its digital realization using a TFT touch-screen display embedded system. Complexity, 2017(6820492): 1–13. DOI: https://doi.org/10.1155/2017/6820492

Méndez-Ramírez, R. Implementación de osciladores caóticos en sistemas embebidos y aplicaciones. Tesis de doctorado. Centro de Investigación Científica y de Educación Superior de Ensenada, 2018.

Platas-Garza, M.A., Zambrano-Serrano, E., Rodríguez-Cruz, J.R., Posadas-Castillo, C. Implementation of an encrypted-compressed image wireless transmission scheme based on chaotic fractional-order systems. Chinese Journal of Physics, 2020, In Press: https://doi.org/10.1016/j.cjph.2020.11.014 DOI: https://doi.org/10.1016/j.cjph.2020.11.014

Lorenz, E.N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, (1963) 20: 130-141. DOI: https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Lü, J. and Chen, G. A New Chaotic Attractor Coined. International Journal of Bifurcation and Chaos, (2002) 12, 659-661. DOI: https://doi.org/10.1142/S0218127402004620

Chen, G. and Ueta, T. Yet Another Chaotic Attractor. International Journal of Bifurcation and Chaos, (1999) 9, 1465-1466. DOI: https://doi.org/10.1142/S0218127499001024

Rössler, O. E. An equation for continuous chaos. Physics Letters A. (1976) 57(5): 397-398. DOI: https://doi.org/10.1016/0375-9601(76)90101-8

Pehli̇van İ, Kurt E, Lai̇ Q, Basaran A, Kutlu M. A Multiscroll Chaotic Attractor and its Electronic Circuit Implementation, Chaos Theory and Applications. 2019; 1(1): 29-37.

Malasoma, J.M. A new class of minimal chaotic flows. Physics Letters A, 2002; 305: 52-58. DOI: https://doi.org/10.1016/S0375-9601(02)01412-3

Zanin M, Sevilla-Escoboza JR, Jaimes-Reátegui R, García-López JH, Huerta-Cuellar G, Pisarchik AN. Synchronization attack to chaotic communication systems. Discontinuity, Nonlinearity, and Complexity. (2013) 1: 333-343. DOI: https://doi.org/10.5890/DNC.2013.11.003

Matsumoto, T. A Chaotic Attractor from Chua’s Circuit. IEEE Trans. Circuits Syst. (1984) 31(12): 1055-1058. DOI: https://doi.org/10.1109/TCS.1984.1085459

Sprott, J.C. A new class of chaotic circuit. Physics Letters A, 2000; 266: 19-23. DOI: https://doi.org/10.1016/S0375-9601(00)00026-8

Published

2023-01-30

How to Cite

Rodríguez Cruz, F. A., Chacón Rendón, C. de J., & Rodriguez-Liñan, A. (2023). Electronic performance of chaotic systems: Part 3, in digital systems. Revista Ingenierías, 26(94), 3–17. https://doi.org/10.29105/ingenierias26.94-788