Frequency response for systems in state space
DOI:
https://doi.org/10.29105/ingenierias26.94-790Keywords:
Frequency response, state space, linear system, Sylvester equationAbstract
The frequency response of linear systems is a popular tool used in the analysis and design of automatic control systems. The common way to obtain the frequency response is from the input-output representation (transfer function) of a system. In this paper we present a novel way to obtain the frequency response from the state space representation. The result is obtained by characterizing the input signal (sine function) by means of an additional external system, as well as the evaluation of the steady state. The determination of phase and magnitude is obtained from the solution to a Sylvester equation repeatedly for different values of the frequency in a specific interval together with some algebraic manipulations and use of trigonometric identities. The procedure is shown by examples and compared with classical ways of obtaining the frequency response.
Downloads
References
H. W. Bode, Relations between attenuation and phase in feedback amplifier design, Bell System Technical Journal, 19(3) p. 421-454, 1940. DOI: https://doi.org/10.1002/j.1538-7305.1940.tb00839.x
H. W. Bode, Network analysis and feedback design, Van Nostrand, 1945.
K. Ogata, Ingeniería de control moderna, Pearson, 5ta edición, 2010.
E. Wernholt, S. Moberg, Experimental comparison of methods for multivariable frequency response function estimation, Proceedings of the 17th world congress of IFAC, Seoul, Korea, julio 6-11, p. 15359-15366, 2008. DOI: https://doi.org/10.3182/20080706-5-KR-1001.02598
A. Pavlov, N. Van der Wouw, H. Nijmeijer, Frequency functions for nonlinear convergent systems, IEEE Tran. on Automatic Control, Vol. 52, No. 6, p. 1159-1165, 2007. DOI: https://doi.org/10.1109/TAC.2007.899020
A. Isidori, Lectures in feedback design for multivariable systems, Springer 2017. DOI: https://doi.org/10.1007/978-3-319-42031-8
G. H. Golub, S. Nash and C. VanLoan, A Hessenberg-Schur method for the problem AX+BX=C, IEEE Trans. on Automatic Control, vol. 34, No. 6, p. 909-913, 1979. DOI: https://doi.org/10.1109/TAC.1979.1102170
A. Saberi, A. Stoorvogel, P. Sannuti, Control of Linear Systems with Regulation and Input Constraints, Springer, 2000. DOI: https://doi.org/10.1007/978-1-4471-0727-9
Página web: https://help.scilab.org/docs/6.1.1/en_US/sylv.html. Consultado el 23/04/2022
Pág. web: https://octave.sourceforge.io/octave/function/sylvester.html. Consultado el 23/04/2022
Pág. web: https://www.mathworks.com/help/matlab/ref/sylvester.html. Consultado el 23/04/2022
Pág. web: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_sylvester.html. Consultado 23/04/2022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Efraín Alcorta García, David Alejandro Díaz Romero, Rodolfo Castillo Martínez, Luis Humberto Rodríguez Alfaro
This work is licensed under a Creative Commons Attribution 4.0 International License.