Perovskite additive engineering in solar cells

Authors

  • Ana Itzel Santiago Mustafat Universidad Autónoma de Nuevo León
  • Arián Espinosa Roa Centro de Investigación en Química Aplicada
  • Edgar González Juárez Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-8453-5146
  • Eduardo M. Sánchez Cervantes Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/ingenierias24.90-9

Keywords:

Solar cells, perovskites, ionic liquids, thin films, stability

Abstract

Perovskite (CSP) solar cells have changed the research paradigm in the area of photovoltaics, due to the combination of high efficiencies along with lower cost and ease of manufacture. CSP can be manufactured using methodologies based on solutions of precursor compounds for the deposition of perovskite films. Among these compounds are the inorganic lead halides (Pbl2, PbCl2,
PbBr2) in combination with organic methylammonium (MA), with reported efficiency values up to 25%. Despite their high efficiencies, these materials have disadvantages, such as the sensitivity of the perovskite film to ambient humidity, resulting in a short device life time. An alternative to reduce stability problems is the application of additives that increase the stability of the cell. Said additives are ionic liquids formed by a cation and an anion with a highly hydrophobic character, based on phosphonium (tetrabutyl phosphonium tetraburoborate (B4PBF4). The additive significantly improves the morphology of the films, obtaining promising improvements in the stability of the devices

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ana Itzel Santiago Mustafat, Universidad Autónoma de Nuevo León

Nanotechnology Engineer from the Higher Technological Institute of Poza Rica (ITSPR) (2019). He is a student of the Master of Science with an orientation in chemistry of materials at the Faculty of Chemical Sciences (FCQ) of the Autonomous University of Nuevo León (UANL).

Arián Espinosa Roa, Centro de Investigación en Química Aplicada

Degree in Chemistry from the Autonomous University of the State of Hidalgo, Center for Chemical Research (2006) and a doctorate in organometallic chemistry from the same institution (2013). He is currently a CONACYT professor researcher, attached to the Monterrey Unit Applied Chemistry Research Center. He is a member of the national system of Level I Researchers.

Edgar González Juárez, Universidad Autónoma de Nuevo León

Chemist graduated from the Autonomous University of the State of Morelos (UAEM). He completed his master's and doctoral studies at the Center for Research in Engineering and Applied Sciences (CIICAp) of the UAEM. He has a doctorate in Engineering and Applied Sciences in the Materials area. He is currently a part-time professor at the Faculty of Chemical Sciences of the Autonomous University of Nuevo León (UANL). He is a member of the National System of Researchers Level C.

Eduardo M. Sánchez Cervantes, Universidad Autónoma de Nuevo León

Graduated in Chemical Sciences from the Monterrey Institute of Technology and Higher Education (1987) and a doctorate in solid state chemistry from Arizona State University (1994). He is a professor at the Faculty of Chemical Sciences (FCQ) of the Autonomous University of Nuevo León (UANL). It belongs to the Mexican Academy of Sciences and the Mexican Societies of Electrochemistry and Materials. Member of the SNI, level 3.

References

Kim JY, Lee JW, Jung HS, Shin H, Park NG. High-Efficiency Perovskite Solar Cells. Chem Rev. 2020;120(15):7867-7918. doi:10.1021/acs.chemrev.0c00107 DOI: https://doi.org/10.1021/acs.chemrev.0c00107

Dieter W. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur /CH3NH3PbX3 a Pb (II) (-System with Cubic Perovskite Structure. Zeitschrift für Naturforsch B. 1978;33(12):1443-1445. https://www.degruyter.com/view/journals/znb/33/12/article-p1443.xml DOI: https://doi.org/10.1515/znb-1978-1214

Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM. Conducting layered organic-inorganic halides containing ‹110›-oriented perovskite sheets. Science (80- ). 1995;267(5203):1473-1476. doi:10.1126/science.267.5203.1473 DOI: https://doi.org/10.1126/science.267.5203.1473

Son DY, Kim SG, Seo JY, et al. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. J Am Chem Soc. 2018;140(4):1358-1364. doi:10.1021/jacs.7b10430 DOI: https://doi.org/10.1021/jacs.7b10430

Zhang M, Bing J, Cho Y, et al. Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells. Nano Energy. 2019;63. doi:10.1016/j.nanoen.2019.06.049 DOI: https://doi.org/10.1016/j.nanoen.2019.06.049

Yang J, Chen S, Xu J, et al. A review on improving the quality of Perovskite Films in Perovskite Solar Cells via the weak forces induced by additives. Appl Sci. 2019;9(20). doi:10.3390/app9204393 DOI: https://doi.org/10.3390/app9204393

Shahiduzzaman M, Yamamoto K, Furumoto Y, Kuwabara T, Takahashi K, Taima T. Ionic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells. RSC Adv. 2015;5(95):77495-77500. doi:10.1039/c5ra08102e DOI: https://doi.org/10.1039/C5RA08102E

Deng X, Xie L, Wang S, et al. Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chem Eng J. 2020;398:125594. doi:10.1016/j.cej.2020.125594 DOI: https://doi.org/10.1016/j.cej.2020.125594

Du J, Wang Y, Zhang Y, et al. Ionic Liquid-Assisted Improvements in the Thermal Stability of CH3NH3PbI3 Perovskite Photovoltaics. Phys Status Solidi - Rapid Res Lett. 2018;12(8):1-6. doi:10.1002/pssr.201800130 DOI: https://doi.org/10.1002/pssr.201800130

Hu Z, Zheng N, Dong S, et al. Phosphonium conjugated polyelectrolytes as interface materials for efficient polymer solar cells. Org Electron. 2018;57:151-157. doi:10.1016/j.orgel.2018.03.006 DOI: https://doi.org/10.1016/j.orgel.2018.03.006

Sun C, Xue Q, Hu Z, et al. Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planar-Heterojunction Perovskite Solar Cells. Small. 2015;11(27):3344-3350. doi:10.1002/smll.201403344 DOI: https://doi.org/10.1002/smll.201403344

Zhang F, Zhu K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv Energy Mater. 2020;10(13):1-26. doi:10.1002/aenm.201902579 DOI: https://doi.org/10.1002/aenm.201902579

Wu Q, Zhou W, Liu Q, et al. Solution-Processable Ionic Liquid as an Independent or Modifying Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Appl Mater Interfaces. 2016;8(50):34464-34473. doi:10.1021/acsami.6b12683 DOI: https://doi.org/10.1021/acsami.6b12683

Zhang W, Lei X, Liu J, et al. Efficient Charge Collection Promoted by Interface Passivation Using Amino Acid Toward High Performance Perovskite Solar Cells. Phys Status Solidi - Rapid Res Lett. 2019;13(2):1-6. doi:10.1002/pssr.201800505 DOI: https://doi.org/10.1002/pssr.201800505

Liao Y, Liu H, Zhou W, et al. Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. J Am Chem Soc. 2017;139(19):6693-6699. doi:10.1021/jacs.7b01815 DOI: https://doi.org/10.1021/jacs.7b01815

Gonzalez-Juarez E, Valadez-Villalobos K, Garcia-Gutierrez DF, Garcia-Gutierrez DI, Roa AE, Sanchez E. Study on photovoltaic stability and performance by incorporating tetrabutyl phosphonium iodide into the active layer of a perovskite type photovoltaic cell. RSC Adv. 2020;10(52):31575-31585. doi:10.1039/d0ra04630b DOI: https://doi.org/10.1039/D0RA04630B

Saihara K, Yoshimura Y, Fujimoto H, Shimizu A. Detrimental effect of glass sample tubes on investigations of BF4--based room temperature ionic liquid-water mixtures. J Mol Liq. 2016;219:493-496. doi:10.1016/j.molliq.2016.03.036 DOI: https://doi.org/10.1016/j.molliq.2016.03.036

Ullah Z, Azmi Bustam M, Man Z, Khan AS. Phosphonium-based ionic liquids and their application in separation of dye from aqueous solution. ARPN J Eng Appl Sci. 2016;11(3):1653-1659.

Mostafa MF, Atallah AS, Elessawi M. Preparation and characterization of a new series of perovskite-like structures showing evidence of structural transitions: (Methyltriphenylphosphonium)2 BX4, B = Mn, Co, Cu, and Hg, and X = Cl/I. Phase Transitions. 1998;64(4):215-227. doi:10.1080/01411599808208000 DOI: https://doi.org/10.1080/01411599808208000

Kagan CR, Mitzi DB, Dimitrakopoulos CD. Organic-inorganic hybrid materials as semiconducting channels in thin- film field-effect transistors. Science (80-). 1999;286(5441):945-947. doi:10.1126/science.286.5441.945 DOI: https://doi.org/10.1126/science.286.5441.945

Chondroudis K, Mitzi DB. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater. 1999;11(11):3028-3030. doi:10.1021/cm990561t DOI: https://doi.org/10.1021/cm990561t

Wang C, Zhang C, Huang Y, et al. Degradation behavior of planar heterojunction CH3NH3PbI3 perovskite solar cells. Synth Met. 2017;227:43-51. doi:10.1016/j.synthmet.2017.02.022 DOI: https://doi.org/10.1016/j.synthmet.2017.02.022

Xia Z, Chai G, Wang Y, Zhou H. Uniform perovskite photovoltaic thin films via ultrasonic spray assisted deposition method. 2015 IEEE 42nd Photovolt Spec Conf PVSC 2015. Published online 2015:1-4. doi:10.1109/PVSC.2015.7355719 DOI: https://doi.org/10.1109/PVSC.2015.7355719

Chen LC, Weng CY. Optoelectronic Properties of MAPbI3 Perovskite/Titanium Dioxide Heterostructures on Porous Silicon Substrates for Cyan Sensor Applications. Nanoscale Res Lett. 2015;10(1):3-7. doi:10.1186/s11671-015-1114-x DOI: https://doi.org/10.1186/s11671-015-1114-x

Rajendra Kumar G, Dennyson Savariraj A, Karthick SN, et al. Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys Chem Chem Phys. 2016;18(10):7284-7292. doi:10.1039/c5cp06232b DOI: https://doi.org/10.1039/C5CP06232B

Jin S, Wei Y, Rong B, et al. Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive. J Power Sources. 2020;450(December 2019):227623. doi:10.1016/j.jpowsour.2019.227623 DOI: https://doi.org/10.1016/j.jpowsour.2019.227623

Wei Y, Chu H, Tian Y, et al. Reverse-Graded 2D Ruddlesden–Popper Perovskites for Efficient Air-Stable Solar Cells. Adv Energy Mater. 2019;9(21):1-9. doi:10.1002/aenm.201900612 DOI: https://doi.org/10.1002/aenm.201900612

Mao L, Ke W, Pedesseau L, et al. Hybrid Dion-Jacobson 2D Lead Iodide Perovskites. J Am Chem Soc. 2018;140(10):3775-3783. doi:10.1021/jacs.8b00542 DOI: https://doi.org/10.1021/jacs.8b00542

Published

2021-01-30

How to Cite

Santiago Mustafat, A. I., Espinosa Roa, A., González Juárez, E., & Sánchez Cervantes, E. M. (2021). Perovskite additive engineering in solar cells . Revista Ingenierías, 24(90), 3–12. https://doi.org/10.29105/ingenierias24.90-9

Funding data