Photocatalytic building materials to reduce air pollution
DOI:
https://doi.org/10.29105/ingenierias27.96-944Keywords:
Photocatalysis, construction, semiconductors, self-cleaning, NOxAbstract
In recent years, the problem of air pollution in large cities has attracted a lot of attention. For this reason, innovative solutions are sought to counteract the large amount of pollutants emitted into the atmosphere on a daily basis by industry and automobiles. The incorporation of photocatalysts in construction materials has emerged as an environmental remediation alternative, giving
conventional materials air purification and self-cleaning properties. This paper aims to present relevant aspects of the development of photocatalytic construction materials: their main applications, trends, and perspectives in the medium and long term.
Downloads
References
Balbuena J., Cruz-Yusta M., Cuevas A.L., López-Escalante M.C., Martín F., Pastor A. y Sánchez L. (2016). Enhanced activity of α-Fe2O3 for photocatalytic NO removal. RSC Adv., 6, 92917–92922. doi:10.1039/c6ra19167c. DOI: https://doi.org/10.1039/C6RA19167C
Li S., Feng K. y Li M. (2017). Identifying the main contributors of air pollution in Beijing, J. Clean. Prod., 163, S359–S365. doi:10.1016/j.jclepro.2015.10.127. DOI: https://doi.org/10.1016/j.jclepro.2015.10.127
Hüsken G., Hunger M. y Brouwers H.J.H. (2009). Experimental study of photocatalytic concrete products for air purification. Build. Environ., 44, 2463-2474. doi:10.1016/j.buildenv.2009.04.010. DOI: https://doi.org/10.1016/j.buildenv.2009.04.010
Prinz A.L. y Richter D.J. (2019). Long-term exposure to fine particulate matter air pollution: An ecological study of its effect on COVID-19 cases and fatality in Germany. Environ. Res., 204, 111949. https://doi.org/10.1016/j.envres.2021.111948. DOI: https://doi.org/10.1016/j.envres.2021.111948
Graber M., Mohr S., Baptiste L., Duloquin G. y Blanc-Labarre C. (2019). Air pollution and stroke. A new modifiable risk factor is in the air. Environ. Neurol. Air., 2055, 1-6. doi:10.1016/j.neurol.2019.03.003. DOI: https://doi.org/10.1016/j.neurol.2019.03.003
Van Vuuren D.P., Cofala J., Eerens H.E., Oostenrijk R., Heyes C., Klimont Z., Den Elzen M.G.J. y Amann M. (2006). Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy, 34, 444-460. doi:10.1016/j.enpol.2004.06.012. DOI: https://doi.org/10.1016/j.enpol.2004.06.012
Ângelo J., Andrade L, Madeira L.M. y Mendes A. (2013). An overview of photocatalysis phenomena applied to NOx abatement. J. Environ. Manage., 129, 522-539. doi:10.1016/j.jenvman.2013.08.006. DOI: https://doi.org/10.1016/j.jenvman.2013.08.006
Ganie A.S., Bano S., Khan N., Sultana S., Rehman Z., Rahman M.M., Sabir S., Coulon F. y Khan M.Z. (2021). Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere, 275, 130065 doi:10.1016/j.chemosphere.2021.130065. DOI: https://doi.org/10.1016/j.chemosphere.2021.130065
Saravanan R., Gracia F. y Stephen A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. En Khan M.M., Pradhan D. y Sohn Y. (Eds), Nanocomposites for Visible Light-induced Photocatalysis 19-40. Springer Link. doi:10.1007/978-3-319-62446-4. DOI: https://doi.org/10.1007/978-3-319-62446-4_2
Banerjee S., Dionysiou D.D. y Pillai S.C. (2015). Environmental Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catal. B, Environ., 176–177 396-428. doi:10.1016/j.apcatb.2015.03.058. DOI: https://doi.org/10.1016/j.apcatb.2015.03.058
Fujishima A., Rao. T.N. y Tryk D.A., Titanium dioxide photocatalysis. (2000). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21, https://doi.org/10.1016/S1389-5567(00)00002-2. DOI: https://doi.org/10.1016/S1389-5567(00)00002-2
Ibrahim R.K., Hayyan M., Hayyan A. y Ibrahim S. (2016). Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. Res., 23, 13754-13788. doi:10.1007/s11356-016-6457-z. DOI: https://doi.org/10.1007/s11356-016-6457-z
Ratan J.K. y Saini A. (2019). Enhancement of photocatalytic activity of self-cleaning cement. Mater. Lett., 244, 178-181. doi:10.1016/j.matlet.2019.02.065. DOI: https://doi.org/10.1016/j.matlet.2019.02.065
Luévano-Hipólito E. y Martínez-de Cruz A. (2018). Photocatalytic stucco for NOx removal under artificial and by real weatherism. Constr. Build. Mater. 174, 302–309. doi:10.1016/j.conbuildmat.2018.04.095. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.095
Chen J. y Poon C.S. (2009). Photocatalytic activity of titanium dioxide modified concrete materials-influence of utilizing recycled glass cullets as aggregates. J. Environ. Manage., 90 3436-3442. doi:10.1016/j.jenvman.2009.05.029. DOI: https://doi.org/10.1016/j.jenvman.2009.05.029
Salla, F. (10 de marzo de 2014). Proyectos Rhino: La fachada que se come la contaminación. Recuperado de VisualARQ: https://www.visualarq.com/es/proyectos-rhino-la-fachada-que-se-come-la-contaminacion/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Magaly Yajaira Nava Núñez, Azael Martínez de la Cruz
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.