Photocatalytic building materials to reduce air pollution

Authors

DOI:

https://doi.org/10.29105/ingenierias27.96-944

Keywords:

Photocatalysis, construction, semiconductors, self-cleaning, NOx

Abstract

In recent years, the problem of air pollution in large cities has attracted a lot of attention. For this reason, innovative solutions are sought to counteract the large amount of pollutants emitted into the atmosphere on a daily basis by industry and automobiles. The incorporation of photocatalysts in construction materials has emerged as an environmental remediation alternative, giving
conventional materials air purification and self-cleaning properties. This paper aims to present relevant aspects of the development of photocatalytic construction materials: their main applications, trends, and perspectives in the medium and long term.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Magaly Yajaira Nava Núñez, Universidad Autónoma de Nuevo León

Civil Engineer from the Instituto Tecnológico de Cd. Victoria (2008) and Doctor in Materials Engineering from the Universidad Autónoma de Nuevo León (2020). Since 2023, she has been a full-time professor at the Universidad Tecnológica Gral. Mariano Escobedo within the Industrial Area Maintenance Career. His areas of interest are focused on the preparation of semiconductor oxides for their addition in construction materials with advanced air purification and self-cleaning applications. It is Candidate Level of the SNII.

Azael Martínez de la Cruz, Universidad Autónoma de Nuevo León

Graduate in Industrial Chemistry from the Universidad Autónoma de Nuevo León (1992) and Doctor in Chemical Sciences from the Universidad Complutense de Madrid (1997). Since 2005 he has been a full research professor at FIME within the postgraduate course in Materials Engineering. His areas of interest focus on the search for semiconductor oxides with potential application as photocatalysts for the treatment of industrial wastewater and air purification by eliminating polluting gases through the use of solar energy. It is Level 3 of the SNII.

References

Balbuena J., Cruz-Yusta M., Cuevas A.L., López-Escalante M.C., Martín F., Pastor A. y Sánchez L. (2016). Enhanced activity of α-Fe2O3 for photocatalytic NO removal. RSC Adv., 6, 92917–92922. doi:10.1039/c6ra19167c. DOI: https://doi.org/10.1039/C6RA19167C

Li S., Feng K. y Li M. (2017). Identifying the main contributors of air pollution in Beijing, J. Clean. Prod., 163, S359–S365. doi:10.1016/j.jclepro.2015.10.127. DOI: https://doi.org/10.1016/j.jclepro.2015.10.127

Hüsken G., Hunger M. y Brouwers H.J.H. (2009). Experimental study of photocatalytic concrete products for air purification. Build. Environ., 44, 2463-2474. doi:10.1016/j.buildenv.2009.04.010. DOI: https://doi.org/10.1016/j.buildenv.2009.04.010

Prinz A.L. y Richter D.J. (2019). Long-term exposure to fine particulate matter air pollution: An ecological study of its effect on COVID-19 cases and fatality in Germany. Environ. Res., 204, 111949. https://doi.org/10.1016/j.envres.2021.111948. DOI: https://doi.org/10.1016/j.envres.2021.111948

Graber M., Mohr S., Baptiste L., Duloquin G. y Blanc-Labarre C. (2019). Air pollution and stroke. A new modifiable risk factor is in the air. Environ. Neurol. Air., 2055, 1-6. doi:10.1016/j.neurol.2019.03.003. DOI: https://doi.org/10.1016/j.neurol.2019.03.003

Van Vuuren D.P., Cofala J., Eerens H.E., Oostenrijk R., Heyes C., Klimont Z., Den Elzen M.G.J. y Amann M. (2006). Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy, 34, 444-460. doi:10.1016/j.enpol.2004.06.012. DOI: https://doi.org/10.1016/j.enpol.2004.06.012

Ângelo J., Andrade L, Madeira L.M. y Mendes A. (2013). An overview of photocatalysis phenomena applied to NOx abatement. J. Environ. Manage., 129, 522-539. doi:10.1016/j.jenvman.2013.08.006. DOI: https://doi.org/10.1016/j.jenvman.2013.08.006

Ganie A.S., Bano S., Khan N., Sultana S., Rehman Z., Rahman M.M., Sabir S., Coulon F. y Khan M.Z. (2021). Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere, 275, 130065 doi:10.1016/j.chemosphere.2021.130065. DOI: https://doi.org/10.1016/j.chemosphere.2021.130065

Saravanan R., Gracia F. y Stephen A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. En Khan M.M., Pradhan D. y Sohn Y. (Eds), Nanocomposites for Visible Light-induced Photocatalysis 19-40. Springer Link. doi:10.1007/978-3-319-62446-4. DOI: https://doi.org/10.1007/978-3-319-62446-4_2

Banerjee S., Dionysiou D.D. y Pillai S.C. (2015). Environmental Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catal. B, Environ., 176–177 396-428. doi:10.1016/j.apcatb.2015.03.058. DOI: https://doi.org/10.1016/j.apcatb.2015.03.058

Fujishima A., Rao. T.N. y Tryk D.A., Titanium dioxide photocatalysis. (2000). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21, https://doi.org/10.1016/S1389-5567(00)00002-2. DOI: https://doi.org/10.1016/S1389-5567(00)00002-2

Ibrahim R.K., Hayyan M., Hayyan A. y Ibrahim S. (2016). Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. Res., 23, 13754-13788. doi:10.1007/s11356-016-6457-z. DOI: https://doi.org/10.1007/s11356-016-6457-z

Ratan J.K. y Saini A. (2019). Enhancement of photocatalytic activity of self-cleaning cement. Mater. Lett., 244, 178-181. doi:10.1016/j.matlet.2019.02.065. DOI: https://doi.org/10.1016/j.matlet.2019.02.065

Luévano-Hipólito E. y Martínez-de Cruz A. (2018). Photocatalytic stucco for NOx removal under artificial and by real weatherism. Constr. Build. Mater. 174, 302–309. doi:10.1016/j.conbuildmat.2018.04.095. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.095

Chen J. y Poon C.S. (2009). Photocatalytic activity of titanium dioxide modified concrete materials-influence of utilizing recycled glass cullets as aggregates. J. Environ. Manage., 90 3436-3442. doi:10.1016/j.jenvman.2009.05.029. DOI: https://doi.org/10.1016/j.jenvman.2009.05.029

Salla, F. (10 de marzo de 2014). Proyectos Rhino: La fachada que se come la contaminación. Recuperado de VisualARQ: https://www.visualarq.com/es/proyectos-rhino-la-fachada-que-se-come-la-contaminacion/

Published

2024-01-31

How to Cite

Nava Núñez, M. Y., & Martínez de la Cruz, A. (2024). Photocatalytic building materials to reduce air pollution. Revista Ingenierías, 27(96), 3–10. https://doi.org/10.29105/ingenierias27.96-944

Issue

Section

Artículos