Application of fractional calculus in modeling transient currents in polymers

Authors

DOI:

https://doi.org/10.29105/ingenierias27.96-948

Keywords:

Transient currents, Caputo derivative, fractional calculus, Mittag-Leffler, polymer

Abstract

This article reviews the limitations of the mathematical models commonly used across the literature for the general description of the phenomenon of transient currents in polymeric materials through a power law or a negative exponential function, and proposes the application of fractional calculus. Among the limitations of the traditional approaches stand out their failure in the association of this distinctive electrical behavior with physical parameters. The causes of these stem from the complexity of electrical behavior in polymers. This phenomenon occurs through the relaxation of electric charge as a function of time, where the viscoelasticity of the polymer widely influences the movement of electric dipoles and the conduction of electric charge carriers. Typically, the phenomenon of transient currents is described using RC (resistor-capacitor) circuits, where a resistor and a capacitor represent the ability of a polymer to dissipate and store electrical charge. The mathematical model herein constructed through the application of fractional calculus provides with a physical interpretation of its parameters, which describe complex behaviors in polymers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Jesús Gabino Puente-Córdova, Universidad Autónoma de Nuevo León

Doctorate in Materials Engineering from the UANL, Research Professor at the FIME-UANL, member of the National System of Researchers Level I. He is also a member of the academic body “Multidisciplinary Engineering Problems”. His areas of interest are fractional calculus, viscoelastic materials and polymeric systems.

Karla Louisse Segura-Méndez, Universidad Autónoma de Nuevo León

Materials Engineer from FIME-UANL. He is currently a student of the Master's Degree in Engineering Sciences with a focus on Materials at FIME. His areas of interest are viscoelastic materials and the application of fractional calculus.

Flor Yanhira Rentería-Baltiérrez, Universidad Autónoma de Nuevo León

Graduated from the Doctorate in Materials Engineering from the Universidad Autónoma de Nuevo León. She is a Professor at the Facultad de Ciencias Químicas and a member of the National System of Level I Researchers.

Isaac Yair Miranda-Valdez, Aalto University

Aalto University. PhD student in Physics Engineering. Member of the European Society of Rheology.

References

C. Guillermin, P. Rain, S.W. Rowe, Transient and steady-state currents in epoxy resin, J. Phys. D. Appl. Phys. 39 (2006) 515–524. https://doi.org/10.1088/0022-3727/39/3/015. DOI: https://doi.org/10.1088/0022-3727/39/3/015

H.F.M. Mohamed, E.E. Abdel-Hady, W.M. Mohammed, Investigation of Transport Mechanism and Nanostructure of Nylon-6,6/PVA Blend Polymers, Polymers (Basel). 15 (2022) 107. https://doi.org/10.3390/polym15010107. DOI: https://doi.org/10.3390/polym15010107

F. Namouchi, H. Guermazi, P. Notingher, S. Agnel, Effect of space charges on the local field and mechanisms of conduction in aged PMMA, IOP Conf. Ser. Mater. Sci. Eng. 13 (2010) 012006. https://doi.org/10.1088/1757-899X/13/1/012006. DOI: https://doi.org/10.1088/1757-899X/13/1/012006

S. Morsalin, B.T. Phung, Dielectric response study of service-aged XLPE cable based on polarisation and depolarisation current method, IEEE Trans. Dielectr. Electr. Insul. 27 (2020) 58–66. https://doi.org/10.1109/TDEI.2019.008306. DOI: https://doi.org/10.1109/TDEI.2019.008306

C. Laurent, G. Teyssedre, S. Le Roy, F. Baudoin, Charge dynamics and its energetic features in polymeric materials, IEEE Trans. Dielectr. Electr. Insul. 20 (2013) 357–381. https://doi.org/10.1109/TDEI.2013.6508737. DOI: https://doi.org/10.1109/TDEI.2013.6508737

C. Mouchache, N. Saidi-Amroun, V. Griseri, M. Saidi, G. Teyssedre, Electrical Conduction and Space Charge in Gamma-Irradiated XLPE, IEEE Trans. Dielectr. Electr. Insul. 30 (2023) 2099–2106. https://doi.org/10.1109/TDEI.2023.3271612. DOI: https://doi.org/10.1109/TDEI.2023.3271612

J.G. Puente-Córdova, E. Reyes-Melo, B. López-Walle, Estudio de los mecanismos de conducción eléctrica en películas delgadas de PVB, Ingenierías 20 (2017) 55–72. https://ingenierias.uanl.mx/anteriores/76/documentos/A20_N76_estudio_de_los_mecanismos.pdf.

S. Matsuoka, Entropy, free volume, and cooperative relaxation, J. Res. Natl. Inst. Stand. Technol. 102 (1997) 213. https://doi.org/10.6028/jres.102.017. DOI: https://doi.org/10.6028/jres.102.017

B. Hadri, P.R. Mamy, J. Martinez, M. Mostefa, Electrical conduction in a semicrystalline polyethylene terephthalate in high electric field, Solid State Commun. 139 (2006) 35–39. https://doi.org/10.1016/j.ssc.2006.04.034. DOI: https://doi.org/10.1016/j.ssc.2006.04.034

F.-C. Chiu, A Review on Conduction Mechanisms in Dielectric Films, Adv. Mater. Sci. Eng. 2014 (2014) 1–18. https://doi.org/10.1155/2014/578168. DOI: https://doi.org/10.1155/2014/578168

P.A. Ryapolov, E.B. Postnikov, Mittag–Leffler Function as an Approximant to the Concentrated Ferrofluid’s Magnetization Curve, Fractal Fract. 5 (2021) 147. https://doi.org/10.3390/fractalfract5040147. DOI: https://doi.org/10.3390/fractalfract5040147

I.Y. Miranda-Valdez, J.G. Puente-Córdova, F.Y. Rentería-Baltiérrez, L. Fliri, M. Hummel, A. Puisto, J. Koivisto, M.J. Alava, Viscoelastic phenomena in methylcellulose aqueous systems: Application of fractional calculus, Food Hydrocoll. 147 (2024) 109334. https://doi.org/10.1016/j.foodhyd.2023.109334. DOI: https://doi.org/10.1016/j.foodhyd.2023.109334

F.Y. Rentería-Baltiérrez, M.E. Reyes-Melo, J.G. Puente-Córdova, B. López-Walle, Application of fractional calculus in the mechanical and dielectric correlation model of hybrid polymer films with different average molecular weight matrices, Polym. Bull. 80 (2023) 6327–6347. https://doi.org/10.1007/s00289-022-04365-1. DOI: https://doi.org/10.1007/s00289-022-04365-1

F.Y. Rentería‐Baltiérrez, M.E. Reyes‐Melo, J.G. Puente‐Córdova, B. López‐Walle, Correlation between the mechanical and dielectric responses in polymer films by a fractional calculus approach, J. Appl. Polym. Sci. 138 (2021). https://doi.org/10.1002/app.49853. DOI: https://doi.org/10.1002/app.49853

E. Zambrano-Serrano, M.A. Platas-Garza, A.E. Loya-Cabrera, G.E. Cedillo-Garza, C. Posadas-Castillo, Comportamiento de orden fraccionario en la respuesta de un circuito RC mediante derivada de núcleo singular, Ingenierias 24 (2021) 22–32. https://doi.org/10.29105/ingenierias24.91-19. DOI: https://doi.org/10.29105/ingenierias24.91-19

J.G. Puente-Córdova, F.Y. Rentería-Baltiérrez, M.E. Reyes-Melo, La derivada conformable y sus aplicaciones en ingeniería, Ingenierias 23 (2020) 20–31. https://doi.org/10.29105/ingenierias23.88-3. DOI: https://doi.org/10.29105/ingenierias23.88-3

J.F. Gómez-Aguilar, J. Rosales-García, M. Guía-Calderón, J.R. Razo-Hernández, Fractional RC and LC Electrical Circuits, Ing. Investig. y Tecnol. 15 (2014) 311–319. https://doi.org/10.1016/s1405-7743(14)72219-x. DOI: https://doi.org/10.1016/S1405-7743(14)72219-X

J.F. Gómez‐Aguilar, A. Atangana, V.F. Morales‐Delgado, Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives, Int. J. Circuit Theory Appl. 45 (2017) 1514–1533. https://doi.org/10.1002/cta.2348. DOI: https://doi.org/10.1002/cta.2348

F. Gómez-Aguilar, J. Rosales-García, M. Guía-Calderón, J. Bernal-Alvarado, Analysis of Equivalent Circuits for Cells: A Fractional Calculus Approach, Ing. Investig. y Tecnol. 13 (2012) 375–384. https://doi.org/10.22201/fi.25940732e.2012.13n3.035. DOI: https://doi.org/10.22201/fi.25940732e.2012.13n3.035

K. Bandara, C. Ekanayake, T. Saha, Modelling the dielectric response measurements of transformer oil, IEEE Trans. Dielectr. Electr. Insul.

(2015) 1283–1291. https://doi.org/10.1109/TDEI.2015.7076832. DOI: https://doi.org/10.1109/TDEI.2015.7076832

M.D. Ortigueira, J.A. Tenreiro Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015) 4–13. https://doi.org/10.1016/j.jcp.2014.07.019. DOI: https://doi.org/10.1016/j.jcp.2014.07.019

G. Sales Teodoro, J.A. Tenreiro Machado, E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys. 388 (2019) 195–208. https://doi.org/10.1016/j.jcp.2019.03.008. DOI: https://doi.org/10.1016/j.jcp.2019.03.008

A. Bonfanti, J.L. Kaplan, G. Charras, A. Kabla, Fractional viscoelastic models for power-law materials, Soft Matter 16 (2020) 6002–6020. https://doi.org/10.1039/D0SM00354A. DOI: https://doi.org/10.1039/D0SM00354A

A. Atangana, J.F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus 133 (2018) 166. https://doi.org/10.1140/epjp/i2018-12021-3. DOI: https://doi.org/10.1140/epjp/i2018-12021-3

J.G. Puente Córdova, C.L. Hernández Ramírez, M.E. Reyes Melo, F.Y. Rentería Baltiérrez, I.Y. Miranda Valdez, Estudio reológico de soluciones poliméricas de carboximetil celulosa, Ing. Investig. y Tecnol. 23 (2022) 1–10. https://doi.org/10.22201/fi.25940732e.2022.23.2.012. DOI: https://doi.org/10.22201/fi.25940732e.2022.23.2.012

J. Rosales-García, J.A. Andrade-Lucio, O. Shulika, Conformable derivative applied to experimental Newton’s law of cooling, Rev. Mex. Física 66 (2020) 224–227. https://doi.org/10.31349/RevMexFis.66.224. DOI: https://doi.org/10.31349/RevMexFis.66.224

Y. Zhao, P. Chen, D. Cao, Extension of Modified Havriliak-Negami Model to Characterize Linear Viscoelastic Properties of Asphalt Binders, J. Mater. Civ. Eng. 28 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001491. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001491

N. Zeggai, B. Dali Youcef, F. Dubois, T. Bouchaour, P. Supiot, L. Bedjaoui, U. Maschke, Analysis of dynamic mechanical properties of photochemically crosslinked poly(isobornylacrylate-co-isobutylacrylate) applying WLF and Havriliak-Negami models, Polym. Test. 72 (2018) 432–438. https://doi.org/10.1016/j.polymertesting.2018.10.038. DOI: https://doi.org/10.1016/j.polymertesting.2018.10.038

F. Mainardi, Why the Mittag-Leffler Function Can Be Considered the Queen Function of the Fractional Calculus?, Entropy 22 (2020) 1359. https://doi.org/10.3390/e22121359. DOI: https://doi.org/10.3390/e22121359

Published

2024-01-31

How to Cite

Puente-Córdova, J. G., Segura-Méndez, K. L., Rentería-Baltiérrez, F. Y., & Miranda-Valdez, I. Y. (2024). Application of fractional calculus in modeling transient currents in polymers. Revista Ingenierías, 27(96), 27–38. https://doi.org/10.29105/ingenierias27.96-948

Issue

Section

Artículos