Half a Century of Innovation: Nanotechnology and Cellular Telephony, Two Pillars of the Modern Era

Authors

DOI:

https://doi.org/10.29105/ingenierias28.98-965

Keywords:

Nanotechnology, Nanoelectronics, Smartphone, Cell phone

Abstract

Advances in nanotechnology have brought closer the possibility of lighter cell phones, longer-lasting batteries, fast processors and even flexible screens. This science, which manipulates matter at the nanometer scale (<100 nm), has been fundamental to the evolution of the electronics and mobile industry. Innovations article aims to explore how innovations in nanotechnology have redefined mobile devices and their impact on the future of cell phones, highlighting both its benefits and limitations. New possibilities are emerging as nanotechnology advances, transforming the digital experience, which could be applied to other fields.

Downloads

Download data is not yet available.

Author Biographies

Alejandra Vallejo Martínez, Universidad Autónoma de Nuevo León

Chemical Engineer from the Facultad de Ciencias Químicas (FCQ) of the Universidad Autónoma de San Luis Potosí (UASLP). Currently a graduate student in the Master of Engineering Sciences with a focus on Nanotechnology at the Facultad de Ingeniería Mecánica y Eléctrica (FIME-UANL)

Alexis Ortiz Ledezma, Universidad Autónoma de Nuevo León

Graduate in Physics from the Ciencias Físico Matemáticas of the Universidad Autónoma de Nuevo León. He is currently pursuing a Master's Degree in Engineering Sciences with a Focus on Nanotechnology at the Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León.

Roxana Berlanga Pérez , Universidad Autónoma de Nuevo León

Mechatronics Engineer from the Facultad de Ingeniería Mecánica y Eléctrica of the Universidad Autónoma de Nuevo León He is pursuing a Master's Degree in Engineering Sciences with a focus on Nanotechnology at the same school. Her research focuses on the development of nanomaterials for energy storage.

Leonardo Chávez-Guerrero, Universidad Autónoma de Nuevo León

PhD in Nanosciences and Nanotechnology. He has a postdoctorate at the Paris School of Chemistry in 2011 and the University of St Andrews School of Chemistry in 2012. With 4 patents granted and 4 in application. Recognized in the Mexican System of Researchers with Level II.

References

1. Bhushan, B. (Ed.). (2017). Springer handbook of nanotechnology (pp. 1-4). Springer. DOI: https://doi.org/10.1007/978-3-662-54357-3_1

2. Dudley, D. (2024, 13 febrero). The evolution of Mobile Phones: 1973 to 2019. Flaunt Digital. https://flauntdigital.com/blog/evolution-mobile-phones/.

3. ISO/TC 229 - Nanotechnologies. (2021, 1 abril). ISO. https://www.iso.org/committee/381983.html.

4. Quintili, M. (2012). Nanociencia y Nanotecnología. un mundo pequeño. Cuadernos del Centro de Estudios en Diseño y Comunicación. Ensayos, (42), 125-155.

5. Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724-803. DOI: https://doi.org/10.1016/j.pmatsci.2011.08.003

6. Singh, H., & Kaur, K. (2023). Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2023.02.061. DOI: https://doi.org/10.1016/j.matpr.2023.02.061

7. Payal, N., & Pandey, P. (2021). Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Patents On Nanotechnology, 16(1), 45-66. https://doi.org/10.2174/1872210515666210120114504. DOI: https://doi.org/10.2174/1872210515666210120114504

8. Cavallari MR, Santos G, Fonseca FJ. Nanoelectronics. Nanoscience and its application. 2017. DOI: https://doi.org/10.1016/B978-0-323-49780-0.00002-8

9. Wise, F. W. (2000). Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement. Accounts Of Chemical Research, 33(11), 773-780. https://doi.org/10.1021/ar970220q. DOI: https://doi.org/10.1021/ar970220q

10. Busatto, S., & De Mello Donega, C. (2022). Magic-Size Semiconductor Nanostructures: Where Does the theMagic Come from? ACS Materials Au, 2(3), 237-249. https://doi.org/10.1021/acsmaterialsau.1c00075 https://doi.org/10.1021/acsmaterialsau.1c00075 DOI: https://doi.org/10.1021/acsmaterialsau.1c00075

11. Ahmadi, M., Amouzegar, Z., Khalili, S., Asadi, S., Aghajani, S., Aryanrad, P., Afkhami, A., Madrakian, T., Thomas, S., & Nguyen, T. A. (2022). Miniaturization—An introduction to miniaturized analytical devices. En Elsevier eBooks (pp. 3-16). https://doi.org/10.1016/b978-0-12-823727-4.00002-x. DOI: https://doi.org/10.1016/B978-0-12-823727-4.00002-X

12. Charles Jr, H. K. (2005). Miniaturized electronics. Johns Hopkins APL technical digest, 26(4), 402-413.

13. Craford, M. G. (2024). LED LIGHTING. LED LIGHTING, (pp. 125-129).

14. Noyce, R. N. (1977). Microelectronics. Scientific American, 237(3), 62-69. DOI: https://doi.org/10.1038/scientificamerican0977-62

15. Langenberg, D. N. (1973). The 1973 Nobel Prize for Physics. Science, 182(4113), 701-704. DOI: https://doi.org/10.1126/science.182.4113.701

16. Alferov, Z. I., Kroemer, H., & Kilby, J. S. Advanced information on the Nobel Prize in Physics 2000.

17. Thompson, S. M. (2008). The discovery, development and future of GMR: The Nobel Prize 2007. Journal of Physics D: Applied Physics, 41(9), 093001. DOI: https://doi.org/10.1088/0022-3727/41/9/093001

18. Magubane, N. (2023, May 3). Moore than meets the eye: The evolution of computing. Penn Today. Consultado el 28 de octubre de 2024 Recuperado de: https://penntoday.upenn.edu/news/moore-meets-eye-evolution-computing.

19. Arabi, K., & Kaminska, B. (Eds.). (2000). System-on-a-Chip: Design and Test. Artech House. Electronic ISBN: 9781580534710.

20. Heald, R. A., & Hodges, D. A. (1976). Multilevel random-access memory using one transistor per cell. IEEE Journal of Solid-State Circuits, 11(4), 519-528. DOI: https://doi.org/10.1109/JSSC.1976.1050769

21. Flipsen, B., Geraedts, J., Reinders, A., Bakker, C. (2012). Environmental sizing of smartphone batteries. 2012 Electronics Goes Green (pp. 1-9) IEEE.

22. Alanko, T., Kojo, M., Laamanen, H., Liljeberg, M., Moilanen, M., & Raatikainen, K. (1994). Measured performance of data transmission over cellular telephone networks. ACM SIGCOMM Computer Communication Review, 24(5), 24-44. DOI: https://doi.org/10.1145/205511.205513

23. Miller, C. (2024). La guerra de los chips: La gran lucha por el dominio mundial (1.a ed.). Planeta Publishing.

24. Leiserson, C. E., (2020). There’s plenty of room at the Top: What will drive computer performance after Moore’s law?. Science, 368(6495), eaam9744. DOI: https://doi.org/10.1126/science.aam9744

Published

2025-01-31

How to Cite

Vallejo Martínez, A., Ortiz Ledezma, A., Berlanga Pérez , R., & Chávez-Guerrero, L. (2025). Half a Century of Innovation: Nanotechnology and Cellular Telephony, Two Pillars of the Modern Era. Revista Ingenierías, 28(98), 42–52. https://doi.org/10.29105/ingenierias28.98-965

Issue

Section

Artículos