Analysis of assistance systems for combustion in gas - hydrogen turbines

Authors

DOI:

https://doi.org/10.29105/ingenierias28.98-966

Keywords:

Gas turbine burner, lean extinguishing, plasma assisted combustion, NOx reduction.

Abstract

This article addresses the impact of supplying heat and active species under adiabatic and standard conditions on the operability and performance of premix combustion systems in gas turbines capable of burning hydrogen gas. The transformation of an energy system based on renewable energies through technological development proposals has a potential impact towards decarbonization. This study numerically and analytically evaluates how the dynamic stability, autoignition, flashback, blow-off of the burner and performance in stationary gas turbines will be affected Aero-thermodynamically by the integration of combustion assist technologies.

Downloads

Download data is not yet available.

Author Biography

Eduardo Ugalde Mejia, Universidad Aeronáutica en Querétaro

He has a degree in Materials Engineering from the Instituto Tecnológico de Querétaro, and  a Master's degree Aerospace in Aeronautical and Astronautical Engineering de la Universidad Autónoma de Querétaro. 

References

1. Noble, D., Wu, D., Emerson, B., Sheppard, S., Lieuwen, T., & Angello, L. (2021). Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future. Journal of Engineering for Gas Turbines and Power, 143(4). DOI: https://doi.org/10.1115/1.4049346

2. Lam, K. K., Geipel, P., & Larfeldt, J. (2015). Hydrogen enriched combustion testing of Siemens industrial SGT-400 at atmospheric conditions. Journal of Engineering for Gas Turbines and Power, 137(2). DOI: https://doi.org/10.1115/1.4028209

3. Chavda, K., & Kulkarni, K. Plasma Assisted Combustion: A Review.

4. Lefebvre, A. H., & Ballal, D. R. (2010). Gas turbine combustion: alternative fuels and emissions. CRC press. DOI: https://doi.org/10.1201/9781420086058

5. Irvin Glassman, Richard A. Yetter, Nick G. Glumac. (2024) Combustion. ELSEVIER Fifth Edition.

6. Lieuwen, T., McDonell, V., Petersen, E., & Santavicca, D. (2008). Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. DOI: https://doi.org/10.1115/1.2771243

7. Naranjo, C. S. (2011). Teoría de la combustión. Editorial UNED.

8. Yiguang Ju, (2021) Plasma Assisted Combustion & Chemical Conversion, Princeton University -Princeton Combustion Summer School. 168.

9. Noble, D. R., Zhang, Q., Shareef, A., Tootle, J., Meyers, A., & Lieuwen, T. (2006, January). Syngas mixture composition effects upon flashback and blowout. In Turbo Expo: Power for Land, Sea, and Air (Vol. 42363, pp. 357-368). DOI: https://doi.org/10.1115/GT2006-90470

10. GasTurb GmbH (2024). GasTurb 14. Design and Off-Design Performance of Gas Turbines.

11. ISO 3977-2. Gas turbines — Procurement — Part 2: Standard reference conditions and ratings.

12. Walsh, P. P. (2004). Gas turbine performance. Blackwell publishing. DOI: https://doi.org/10.1002/9780470774533

13. Saturday, E. G., & Nweke, P. (2020). Off-design performance analysis of gas turbines. Global Journal of Engineering and Technology Advances, 4(2), 001-010. DOI: https://doi.org/10.30574/gjeta.2020.4.2.0046

14. Igwe, I. S. (2019). Off-Design Performance Analysis of Gbaran-Ubie Gas Power Plant, Bayelsa State, Using Energy and Exergy Methods. International Journal of Engineering Science, 21956.

15. Marin, G. E., Osipov, B. M., Titov, A. V., & Akhmetshin, A. R. (2023). Simulation of the operation of a gas turbine installation of a thermal power plant with a hydrogen fuel production system. International Journal of Hydrogen Energy, 48(12), 4543-4550. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.075

Published

2025-01-31

How to Cite

Ugalde Mejia, E. (2025). Analysis of assistance systems for combustion in gas - hydrogen turbines. Revista Ingenierías, 28(98), 15–25. https://doi.org/10.29105/ingenierias28.98-966

Issue

Section

Artículos