Approximation of fractional operators in the frequency domain and its application in chaotic systems
DOI:
https://doi.org/10.29105/ingenierias28.99-969Keywords:
Fractional Integrators, Bode diagrams, State Space, Xcos, chaosAbstract
In this work, a methodology for approximating the fractional-order integrator operator in the frequency domain is considered, based on Bode analysis. This approximation enables the representation of fractional-order systems using integer-order transfer functions, adjusting the fractional order according to the bandwidth and required accuracy. Two ranges of fractional order, [0.1, 0.9] and [0.9, 0.99], are analyzed, verifying that the amplitude diagram slope follows the behavior of −20α dB/decade. Finally, the approximation is implemented in a fractional-order chaotic system, evaluating its effectiveness in generating strange attractors. The results show that the methodology based on Bode diagrams provides an efficient strategy for modeling fractional order chaotic systems within a specific frequency range and its applications in engineering.
Downloads
References
1. Vieira, L. C., Costa, R. S., & Valério, D. (2023). An overview of mathematical modelling in cancer research: fractional calculus as modelling tool. Fractal and fractional, 7(8), 595. DOI: https://doi.org/10.3390/fractalfract7080595
2. Tarasov, V. E. (2019). On history of mathematical economics: Application of fractional calculus. Mathematics, 7(6), 509. DOI: https://doi.org/10.3390/math7060509
3. Ali, A., Bingi, K., Ibrahim, R., Devan, P. A. M., & Devika, K. B. (2024). A review on FPGA implementation of fractional-order systems and PID controllers. AEU-International Journal of Electronics and Communications, 155218. DOI: https://doi.org/10.1016/j.aeue.2024.155218
4. Burrage, K., Burrage, P.M., Bueno-Orovio, A. (2024). Fractional Models in Biology and Medicine. In: Kevrekidis, P.G., Cuevas-Maraver, J. (eds) Fractional Dispersive Models and Applications. Nonlinear Systems and Complexity, vol 37. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-54978-6_2
5. Munoz-Pacheco, J. M., Posadas-Castillo, C., & Zambrano-Serrano, E. (2020). The effect of a non-local fractional operator in an asymmetrical glucose-insulin regulatory system: Analysis, synchronization and electronic implementation. Symmetry, 12(9), 1395. DOI: https://doi.org/10.3390/sym12091395
6. Tamba, V. K., Biamou, A. L. M., Pham, V. T., Grassi, G., Tagne, F. K., & Takougang, A. C. N. (2025). Fractional-order bi-Hopfield neuron coupled via a multistable memristor: Complex neuronal dynamic analysis and implementation with microcontroller. AEU-International Journal of Electronics and Communications, 191, 155661. DOI: https://doi.org/10.1016/j.aeue.2025.155661
7. Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29, 3-22. DOI: https://doi.org/10.1023/A:1016592219341
8. Echenausía-Monroy, J. L., Quezada-Tellez, L. A., Gilardi-Velázquez, H. E., Ruíz-Martínez, O. F., Heras-Sánchez, M. D. C., Lozano-Rizk, J. E., ... & Álvarez, J. (2024). Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects. Fractal and Fractional, 9(1), 22. DOI: https://doi.org/10.3390/fractalfract9010022
9. Charef, A., Sun, H. H., Tsao, Y. Y., & Onaral, B. (1992). Fractal system as represented by singularity function. IEEE Transactions on automatic Control, 37(9), 1465-1470. DOI: https://doi.org/10.1109/9.159595
10. Carlson, G., & Halijak, C. (1964). Approximation of fractional capacitors (1/s)^(1/n) by a regular Newton process. IEEE Transactions on Circuit theory, 11(2), 210-213. DOI: https://doi.org/10.1109/TCT.1964.1082270
11. Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25-39. DOI: https://doi.org/10.1109/81.817385
12. Azar, A. T., Vaidyanathan, S., & Ouannas, A. (Eds.). (2017). Fractional order control and synchronization of chaotic systems (Vol. 688). Springer. DOI: https://doi.org/10.1007/978-3-319-50249-6
13. Tavazoei, M. S., & Haeri, M. (2007). Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Processing, 1(4), 171-181. DOI: https://doi.org/10.1049/iet-spr:20070053
14. Tavazoei, M. S., & Haeri, M. (2008). Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Analysis: Theory, Methods & Applications, 69(4), 1299-1320. DOI: https://doi.org/10.1016/j.na.2007.06.030
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ernesto Zambrano-Serrano, Miguel Ángel Platas-Garza, Elizabeth Guadalupe Lara Hernández, Efraín Alcorta García, Jesús Manuel Muñoz-Pacheco

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Consejo Nacional de Humanidades, Ciencias y Tecnologías
Grant numbers CF-2023-I-1110