Synthesis of PbS quantum dots with an optimal band gap for photovoltaic applications

Authors

DOI:

https://doi.org/10.29105/ingenierias28.99-970

Keywords:

Quantum dots, PbS, Chemical synthesis, Quantum confinement

Abstract

Lead sulfide (PbS) quantum dots (QDs) exhibit great quantum confinement effect properties at sizes smaller than 18 nm. Different synthesis methodologies have been used to synthesize PbS QDs with sizes as small as 1.4 nm. Theoretical studies have been conducted to determine the optimum value for the energy band gap exhibited by the material when used as the light-absorbing layer in photovoltaic devices, reporting a value of ~1.4 eV. Based on this fact, it is important to focus efforts on synthesizing monodisperse PbS QDs with this optimal Eg value for photovoltaic applications.

Downloads

Download data is not yet available.

Author Biographies

Jose Misael Chavarria Martínez, Universidad Autonoma de Nuevo Leon

He earned his degree in Chemical Engineering from the Facultad de Ciencias Químicas (FCQ-UANL), and a Master’s in Engineering Sciences with a specialization in Materials at FIME-UANL, where he also earned his Ph.D. in Materials Engineering. He is currently a faculty member at UANL.

Diana Fabiola García Gutiérrez, Universidad Autonoma de Nuevo Leon

She is a professor and researcher at FIME-UANL and a Level I member of the Sistema Nacional de Investigadoras e Investigadores (SNII). Her research focuses on the synthesis, characterization, and application of semiconductor nanoparticles in optoelectronic devices, with emphasis on inorganic perovskite nanoparticles.

Domingo I. Garcia Gutierrez, Universidad Autonoma de Nuevo Leon

He is a professor and researcher at FIME-UANL and a Level III member of the Sistema Nacional de Investigadores (SNI). His research focuses on the synthesis, characterization, and application of hybrid nanostructured materials based on semiconductor nanoparticles and graphene-derived materials for optoelectronic applications. In 2014, he received the UANL Research Award in the field of Engineering and Technology.

References

1. Kroupa, D. M. et al. “Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification”. Nat. Commun. 8, 15257 (2017). DOI: https://doi.org/10.1038/ncomms15257

2. Fernée, M. J.; Thomsen, E.; Jensen, P.; Rubinsztein-Dunlop, H. “Highly Efficient Luminescence from a Hybrid State Found in Strongly Quantum Confined PbS Nanocrystals”. Nanotechnology, 17 (4), 956–962 (2006). DOI: https://doi.org/10.1088/0957-4484/17/4/020

3. Zdanowicz, T., Rodziewicz, T., & Zabkowska-Waclawek, M. “Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations”. Sol. Ener. Mater. Sol. Cells, 87(1–4), 757–769 (2005). DOI: https://doi.org/10.1016/j.solmat.2004.07.049

4. Bhandari, K. P. et al. “Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS”. Sol. Ener. Mater. Sol. Cells, 117, 476–482 (2013). DOI: https://doi.org/10.1016/j.solmat.2013.07.018

5. Jasieniak, J., Califano, M. & Watkins, S. E. “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals”. ACS Nano 5, 5888–5902 (2011). DOI: https://doi.org/10.1021/nn201681s

6. Zeitouny, J., Katz, E.A., Dollet, A. et al. “Band Gap Engineering of Multi-Junction Solar Cells: Effects of Series Resistances and Solar Concentration”. Sci Rep. 7, 1766 (2017). DOI: https://doi.org/10.1038/s41598-017-01854-6

7. «Irradiación solar - ECyT-ar». Accedido: 17 de diciembre de 2024. [En línea]. Disponible en: https://cyt-ar.com.ar/cyt-ar/index.php/Irradiaci%C3%B3n_solar#Fuentes.

8. Lee, Wonyoung & Dasgupta, Neil & Jung, Hee Joon & Lee, Jung-Rok & Sinclair, Robert & Prinz, Fritz. “Scanning tunneling spectroscopy of lead sulfide quantum wells fabricated by atomic layer deposition”. Nanotechnology. 21, 485402 (2010). DOI: https://doi.org/10.1088/0957-4484/21/48/485402

9. Hines, M.A. and Scholes, G.D. “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution”. Adv. Mater. 15, 1844-1849 (2003). DOI: https://doi.org/10.1002/adma.200305395

10. Yu, W. W., & Peng, X. “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers”. Angew. Chem. Inter. Ed. 41(13), 2368–2371 (2002). DOI: https://doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G

11. Mark C. Weidman, Megan E. Beck, Rachel S. Hoffman, Ferry Prins, and William A. Tisdale. “Monodisperse, Air-Stable PbS Nanocrystals via Precursor Stoichiometry Control”. ACS Nano, 8, 6363–6371 (2014). DOI: https://doi.org/10.1021/nn5018654

12. Choi, H.; Ko, J.; Kim, Y.; Jeong, S. “Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots”. J. Am. Chem. Soc. 135, 5278−5281 (2013). DOI: https://doi.org/10.1021/ja400948t

13. Torres-Gomez, N., Garcia-Gutierrez, D. F., Lara-Canche, A. R., Triana-Cruz, L., Arizpe-Zapata, J. A., & Garcia-Gutierrez, D. I. “Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with S-terminated surfaces capped with diphenylphosphine”. J. Alloys Compd. 860, 158443 (2021). DOI: https://doi.org/10.1016/j.jallcom.2020.158443

14. Green, P. B., Narayanan, P., Li, Z., Sohn, P., Imperiale, C. J., & Wilson, M. W. “Controlling Cluster Intermediates Enables the Synthesis of Small PbS Nanocrystals with Narrow Ensemble Line Widths”. Chem. Mater. 32(9), 4083–4094 (2020). DOI: https://doi.org/10.1021/acs.chemmater.0c00984

15. García-Gutiérrez, D. F.; González Ovalle, D.; Hernández Casillas, L. P.; Fungo, F.; García-Gutiérrez, D. I. “Efecto Del Cambio de Agente Protector En Las Propiedades Ópticas y Eléctricas de Nanopartículas de Sulfuro de Plomo (PbS)”. Ingenierías, 8 (5), 6–16 (2014).

16. Lina M. De Leon-Covian, Jesús A. Arizpe-Zapata, Marco A. Garza-Navarro, Domingo I. Garcia-Gutierrez. “Effect of diphenylphosphine in the synthesis of PbSe Nanoparticles”. Chalcogenide Lett., 11 (11), 567 – 576 (2014).

17. Thanh, N. T. K., Maclean, N., & Mahiddine, S. “Mechanisms of Nucleation and Growth of Nanoparticles in Solution”. Chem. Rev., 114(15), 7610–7630 (2014). DOI: https://doi.org/10.1021/cr400544s

18. Manzoor, U., Tuz Zahra, F., Rafique, S., Moin, M. T., & Mujahid, M. “Effect of Synthesis Temperature, Nucleation Time, and Postsynthesis Heat Treatment of ZnO Nanoparticles and Its Sensing Properties”. Journal of Nanomaterials, 2015, 1–6 (2015). DOI: https://doi.org/10.1155/2015/189058

19. Li, D., & Kaner, R. B. “How nucleation affects the aggregation of nanoparticles”. J. Mater. Chem., 17(22), 2279 (2007). DOI: https://doi.org/10.1039/b700699c

20. Zofia Mielke, G. Dana Brabson, and Lester Andrews. “Matrix Infrared Spectra of the Phosphorus Sulfides PS P2S, and PS2”. J. Phys. Chem. 95, 75-79 (1991). DOI: https://doi.org/10.1021/j100154a018

21. Li, X., Minamimoto, H., & Murakoshi, K. “Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer”. Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 244–250 (2018). DOI: https://doi.org/10.1016/j.saa.2018.02.020

22. Baranov, A. V., Bogdanov, K. V., Ushakova, E. V., Cherevkov, S. A., Fedorov, A. V., & Tscharntke, S. “Comparative analysis of Raman spectra of PbS macro- and nanocrystals”. Opt. Spectrosc. 109(2), 268–271 (2010). DOI: https://doi.org/10.1134/S0030400X10080199

23. Blackburn, J. L.; Chappell, H.; Luther, J. M.; Nozik, A. J.; Johnson, J. C. “Correlation between Photooxidation and the Appearance of Raman Scattering Bands in Lead Chalcogenide Quantum Dots”. J. Phys. Chem. Lett. 2, 599−603 (2011). DOI: https://doi.org/10.1021/jz2000326

24. Garcia-Gutierrez, D. F., Hernandez-Casillas, L. P., Cappellari, M. V., Fungo, F., Martínez-Guerra, E., & García-Gutiérrez, D. I. “Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination”. ACS Omega, 3(1), 393–405 (2018). DOI: https://doi.org/10.1021/acsomega.7b01451

Published

2025-07-30

How to Cite

Chavarria Martínez, J. M., García Gutiérrez, D. F., & Garcia Gutierrez, D. I. (2025). Synthesis of PbS quantum dots with an optimal band gap for photovoltaic applications. Revista Ingenierías, 28(99), 3–15. https://doi.org/10.29105/ingenierias28.99-970

Funding data