The eternal return of the universe

Authors

  • José Rubén Morones Ibarra Universidad Autonoma de Nuevo Leon

DOI:

https://doi.org/10.29105/ingenierias28.99-971

Keywords:

Eternal return, Poincaré’s recurrence theorem, microstates of a system, statistical physics

Abstract

In this work some ideas about the concept of eternal return in the universe are presented, supported by scientific arguments. Applying the concepts of quantum statistical physics, it is proven that for a universe eternal in time and finite volume but unlimited, all possible physical states occur recurrently for sufficiently long times. This means that all events that occur in the universe will repeat indefinitely.

Downloads

Download data is not yet available.

Author Biography

José Rubén Morones Ibarra, Universidad Autonoma de Nuevo Leon

Bachelor’s degree in Physical-Mathematical Sciences from the Universidad Autónoma de Nuevo León (UANL). He obtained a Doctorate in Physics, specializing in Theoretical Nuclear Physics, from the University of South Carolina, USA. He is currently a full-time research professor at the Faculty of Physical and Mathematical Sciences of the Universidad Autónoma de Nuevo León (UANL). He is a Level I member of the National System of Researchers and a Regular Member of the Mexican Academy of Sciences.

References

1. Hahm, D. E., The Origins of Stoic Cosmology, Ohio State University Press, (1977).

2. Borges, Jorge Luis, El fin de la eternidad, Libros Tauro (1953).

3. Hume, David, Diálogos sobre religión natural, Parte VIII P. 142, colección de textos clásicos de filosofía, El Colegio de México, (1942). DOI: https://doi.org/10.2307/j.ctv2868dt

4. Nietzsche, Friedrich, Así habló Zaratustra, Grupo editorial Tomo, 3a edición, julio (2006).

5. R Dong, D Stojkovic, Phys. Rev. D94, 104058, Gravity can significantly modify classical and quantum Poincaré recurrence theorems (2016). DOI: https://doi.org/10.1103/PhysRevD.94.104058

6. Schulman, L. S. DOI: https://doi.org/10.1103/PhysRevA.18.2379. DOI: https://doi.org/10.1103/PhysRevA.18.2379

7. Dyson, L., Kleban, M. and Susskind, L., Disturbing Implications of a Cosmological Constant, DOI: 10.1088/1126-6708/2002/10/011, JHEP 10 (2002) 011 (2002). DOI: https://doi.org/10.1088/1126-6708/2002/10/011

8. Gödel, Kurt, "An Example of a New Type of Cosmological Solution of Einstein's Field Equations of Gravitation". Rev. Mod. Phys. 21 (3): 447–450. Bibcode:1949RvMP...21..447G. doi:10.1103/RevModPhys.21.447, (1949). DOI: https://doi.org/10.1103/RevModPhys.21.447

9. Huang, Kerson, Introduction to Statistical Physics, second edition, CRC Press, (2009).

10. Kestin, Joseph and Dorfman, J. R. A course in statistical thermodynamics, Academic Press, (1971). DOI: https://doi.org/10.1016/B978-0-12-405350-2.50009-7

11. Greiner, Walter, Neise, Ludwig and Stocker, Horst, Thermodynamics and statistical Mechanics, Springer, (2000).

12. Das, A. and Ferbel, T. Introduction to Nuclear and Particle Physics, World Scientific, (2006).

13. Uffink , Jos and Valente , Giovanni , Lanford’s Theorem and the Emergence of Irreversibility, Found Phys (2015) 45:404–438 DOI 10.1007/s10701-015-9871-z. DOI: https://doi.org/10.1007/s10701-015-9871-z

14. Don N, Information loss in black holes and/or conscious beings? ∗ Don N. Page, https://doi.org/10.48550/arXiv.hep-th/9411193.

15. Linde, Andrei, Particle Physics and inflationary cosmology, (2005). https://arxiv.org/pdf/hep-th/0503203.

16. Vopson M. “Estimation of the information contained in the visible matter of the universe”.

AIP Advances 11, 105317 (2021) https://doi.org/10.1063/5.0064475. DOI: https://doi.org/10.1063/5.0064475

17. Gujrati, P. D., Poincaré Recurrence, Zermelo’s Second Law Paradox, and Probabilistic Origin in Statistical Mechanics arXiv:0803.0983.

Published

2025-07-30

How to Cite

Morones Ibarra, J. R. (2025). The eternal return of the universe. Revista Ingenierías, 28(99), 27–35. https://doi.org/10.29105/ingenierias28.99-971