Study of precipitation during the hot rolling process of a high-alloy, high-strength steel

Authors

  • Laura Fátima Zúñiga Pineda Universidad Autónoma de Nuevo León
  • Martha Patricia Guerrero Mata Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-8337-298X
  • Omar García Rincón Ternium

DOI:

https://doi.org/10.29105/ingenierias28.99-974

Keywords:

Thermomechanical process, solubility product, precipitation kinetics, HSLA

Abstract

This paper addresses precipitation during hot rolling of high-strength steels, especially API grades. The thermomechanical process (T, Ԑ, ε ̇), the solubility product (Ks), and the strain-induced precipitation kinetics (Ps-Pf) are analyzed. The objective is to propose the thermomechanical and chemical conditions given by the presence of Nb, Ti, and V that favorizes precipitation of carbides of these elements in HSLA (High Strength Low Alloy) steels, seeking to modify the microstructure and mechanical properties.

Downloads

Download data is not yet available.

Author Biographies

Laura Fátima Zúñiga Pineda, Universidad Autónoma de Nuevo León

A PhD student at UANL, she holds a master's degree in Automotive Engineering and a bachelor's degree in Electromechanical Engineering. Her research focuses on metallurgical analysis, thermal and thermomechanical simulation, and advanced steel design, utilizing Gleeble testing, with a particular emphasis on materials for automotive applications and hydrocarbon pipelines.

Martha Patricia Guerrero Mata, Universidad Autónoma de Nuevo León

Expert in metallic materials, simulation, and welding. A researcher at UANL since 1999, she has served as an international visiting professor, supervised 78 theses, published 60 articles, and participated in over 150 conferences. She leads scientific projects and collaborates with renowned global institutions.

Omar García Rincón, Ternium

An expert in the hot rolling industry, he currently works as an R&D Manager and was previously a Product Technologist. Since 2013, he has been an adjunct professor at the Autonomous University of Nuevo León, teaching Physical Metallurgy and Heat Treatment. He co-organized the Steel Symposium at the 3rd Pan-American Materials Congress and has contributed to international specialized publications.

References

1. Baker, T. N. (2016). Microalloyed steels. Ironmaking & Steelmaking, 43(4), 264-307. https://doi.org/10.1179/1743281215Y.000000006. DOI: https://doi.org/10.1179/1743281215Y.0000000063

2. Villalobos, J. C., Del-Pozo, A., Campillo, B., Mayen, J., & Serna, S. (2018). Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals, 8(5), 351. https://doi.org/10.3390/met8050351.

3. Mohammadijoo, M., Collins, L., Henein, H., & Ivey, D. G. (2018). Canadian HSLA steel pipelines: History and technology developments. ERA. https://doi.org/10.7939/r3-wvqv-qg18. DOI: https://doi.org/10.7449/2018/MST_2018_1174_1181

4. Xu, Z.-W., Liu, X.-M., & Zhang, K. (2019). Mechanical properties prediction for hot rolled alloy steel using convolutional neural network. IEEE Access, 7, 1-10. https://doi.org/10.1109/ACCESS.2019.2909586. DOI: https://doi.org/10.1109/ACCESS.2019.2909586

5. Šimeček, P., & Hajduk, D. (2006). Prediction of mechanical properties of hot rolled steel products. ITA Ltd.

6. Keeler, S. (2017). Advance high-strength steels application guidelines (Versión 6.0). WorldAutoSteel, World Steels Association.

7. American Petroleum Institute (API). (2004). API Specification 5L: Specification for line pipe (43ª ed.). API Publishing Services. Available online: API 5L: Specification for Line Pipe.

8. American Petroleum Institute (API). (2012). API Specification 5L: Specification for line pipe (45ª ed.). API Publishing Services.

9. American Petroleum Institute (API). (2018). API Specification 5L: Specification for line pipe (46ª ed.). API Publishing Services.

10. Octal Steel. (2024). API 5L Pipe Specification (46th Edition Updated on 2024). Recuperado de https://www.octalsteel.com/api-5l-pipe-specification.

11. Padrón Domínguez, O. (2017). Efecto del desplazamiento del electrodo en soldadura circunferencial por arco sumergido en tubería de acero API-5L-X70.

12. Altos Hornos de México (AHMSA). (2019). Manual de especificaciones y garantías AHMSA (MEGA 04, 1ª ed.).

13. Bhattacharya, D. (2014). Microalloyed steels for the automotive industry. Tecnol. Metal. Mater. Miner., 11(4), 371-383. DOI: https://doi.org/10.4322/tmm.2014.052

14. Schmitt, J.-H., & Iung, T. (2018). New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique, 19(6), 414-430. https://doi.org/10.1016/j.crhy.2018.11.004. DOI: https://doi.org/10.1016/j.crhy.2018.11.004

15. Matlock, D. K., & Speer, J. G. (s.f.). Processing opportunities for new advanced high-strength sheet steels. Colorado School of Mines.

16. Branco, R., & Berto, F. (2021). High-strength low-alloy steels. Metals, 11(1000). https://doi.org/10.3390/met1107100. DOI: https://doi.org/10.3390/met11071000

17. Materials Science and Technology. (2009). On the strength of microalloyed steels - An interpretive review. Materials Science and Technology. https://doi.org/10.1179/174328409X455233. DOI: https://doi.org/10.1179/174328409X455233

18. Billur, E., & Altan, T. (s.f.). Challenges in forming advanced high-strength steels. Engineering Research Center for Net Shape Manufacturing (ERC/NSM).

19. Téllez López, D. M. R. (s.f.). Caracterización de aceros avanzados y estudio de su resistencia mecánica y conformabilidad.

20. American Institute of Steel Construction (AISC). (2016). Especificación para construcciones de acero (ANSI/AISC 360-16).

21. Uranga, P. (2019). Advances in microalloyed steels. Metals, 9(279). https://doi.org/10.3390/met9030279. DOI: https://doi.org/10.3390/met9030279

22. Procesos. (2020). Effect of the chemical composition on the structural state and mechanical properties of complex microalloyed steels of the ferritic class. Processes, 8(646). https://doi.org/10.3390/pr8060646.

23. Ashby, M., Shercliff, H., & Cebon, D. (2007). Materials engineering, science, processing and design. Elsevier.

24. Guo, C., Chi, H., Zhou, J., Gu, J., Ma, D., & Dong, L. (2025). Evolution of microstructure and mechanical properties of ultra-high-strength heat-resistant bearing steel during long-term aging at 500°C. Materials, 18(639). https://doi.org/10.3390/ma18030639. DOI: https://doi.org/10.3390/ma18030639

25. Uranga, P., & Rodríguez-Ibabe, J. M. (2020). Thermomechanical processing of steels. Metals, 10(641). https://doi.org/10.3390/met1005064. DOI: https://doi.org/10.3390/met10050641

26. Felker, C. A., Speer, J. G., De Moor, E., & Findley, K. O. (2020). Hot strip mill processing simulations on a Ti-Mo microalloyed steel using hot torsion testing. Metals, 10(334). https://doi.org/10.3390/met10030334. DOI: https://doi.org/10.3390/met10030334

27. Poliak, E. I., Pottore, N. S., Skolly, R. M., Umlauf, W. P., & Brannbacka, J. C. (2009). Thermomechanical processing of advanced high-strength steels in production hot strip rolling. La Metallurgia Italiana.

28. Marmulev, A. V., Kaputkina, L. M., Herman, G., & Poliak, E. I. (2014). Effects of thermomechanical processing on uniformity of microstructure and properties of AHSS. Materials Science Forum, 783-786, 967-972. https://doi.org/10.4028/www.scientific.net/MSF.783-786.967. DOI: https://doi.org/10.4028/www.scientific.net/MSF.783-786.967

29. Błoniarz, R., Majta, J., Rutkowski, B., Korpała, G., Prahl, U., Janiszewski, J., & Lisiecka-Graca, P. (2021). How the thermomechanical processing can modify the high strain rate mechanical response of a microalloyed steel. Materials, 14(6062). https://doi.org/10.3390/ma14206062. DOI: https://doi.org/10.3390/ma14206062

30. Auto/Steel Partnership Joining Project. (2020). Advanced high-strength steel (AHSS) weld performance study for autobody structural components.

31. Sulzbach, G. A. S., Rodrigues, M. V. G., Rodrigues, S. F., Lima, M. N. S., Loureiro, R. C. P., Sá, D. F. S., & Abreu, H. F. G. (2022). Optimization of thermomechanical processing under double-pass hot compression tests of a high Nb and N-bearing austenitic stainless-steel biomaterial using artificial neural networks. Metals, 12(1783). https://doi.org/10.3390/met12111783. DOI: https://doi.org/10.3390/met12111783

32. Hanoglu, U., & Šarler, B. (2019). Hot rolling simulation system for steel based on advanced meshless solution. Metals, 9(788). DOI: https://doi.org/10.3390/met9070788

33. Lu, Z., Zhou, D., Yu, D., & Xiao, H. (2024). Research on dynamic modelling, characteristics and vibration reduction application of hot rolling mills considering the rolling process. Machines, 12(629). https://doi.org/10.3390/machines12090629. DOI: https://doi.org/10.3390/machines12090629

34. Montemayor de la Garza, K. (2022). Diseño de pases de laminación en caliente para la producción de postes a partir del reciclado de riel de ferrocarril de acero 1075 (Tesis de licenciatura). Universidad Autónoma de Nuevo León.

35. Markulik, S., Nagyova, A., Turisova, R., & Villinsky, T. (2021). Improving quality in the process of hot rolling of steel sheets. Applied Sciences, 11(5451). https://doi.org/10.3390/app11125451. DOI: https://doi.org/10.3390/app11125451

36. Endo, S., & Nakata, N. (2015). Development of thermo-mechanical control process (TMCP) and high-performance steel in JFE Steel. JFE Technical Report, 20.

37. de Oliveira Abreu, L. G., de Faria, G. L., de Faria, R. J., Matsubara, D. B., & Porcaro, R. R. (2024). Optimizing rolling strategies for API 5L X80 steel heavy plates produced by thermomechanical processing in a reversible single-stand mill. Metals, 14(746). https://doi.org/10.3390/met14070746. DOI: https://doi.org/10.3390/met14070746

38. Zuñiga Pineda, L. F. (s.f.). (2020), Efecto del proceso termomecánico en la microestructura de un acero de fase compleja (CP), Universidad Autónoma de Nuevo León.

39. Illescas Fernández, S. (2007). Estudio del efecto de los elementos microaleantes en un acero HSLA (Tesis de maestría), Escola Tècnica Superior d'Enginyeria Industrial de Barcelona - Enginyeria de Materials.

40. Hou, Y., & Kadoi, K. (2024). Effect of Ti, Al, and Mg addition on microstructure evolution in weld metal of stainless steel solidified with F and FA modes and the tensile property. Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2024.147190. DOI: https://doi.org/10.1016/j.msea.2024.147190

41. Villalobos, J. C., Del-Pozo, A., Campillo, B., Jan Mayen, & Serna, S. (2018). Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals, 8(5), 351. https://doi.org/10.3390/met8050351.

42. Zaitsev, A., Arutyunyan, N., & Koldaev, A. (2023). Hot ductility, homogeneity of the composition, structure, and properties of high strength microalloyed steels: A critical review. Metals, 13(6), 1066. https://doi.org/10.3390/met13061066. DOI: https://doi.org/10.3390/met13061066

43. García Jacobo, R. (2019). Efecto de la potencia láser del proceso HLAW en uniones de aceros HSLA 550 sobre la microestructura y propiedades mecánicas. Corporación Mexicana de Investigación en Materiales.

44. Callister, W. D., Jr. (s.f.). Introducción a la ciencia e ingeniería de los materiales (Vol. 1, Edición e-book). ISBN: 978-84-291-9560-6.

45. Zhang, Y., & Ma, Y. (2025). Research progress on titanium–niobium micro-alloyed high-strength steel. Materials, 18(2), 325. https://doi.org/10.3390/ma18020325. DOI: https://doi.org/10.3390/ma18020325

46. Kong, D., Zhou, J., Dong, W., Cai, L., & Qu, C. (2024). Effect of initial intergranular ferrite size on induction hardening microstructure of microalloyed steel 38MnVS6. Crystals, 14(9), 827. https://doi.org/10.3390/cryst14090827. DOI: https://doi.org/10.3390/cryst14090827

47. Chatterjee, D. (2017). Behind the development of advanced high strength steel (AHSS) including stainless steel for automotive and structural applications - An overview. Materials Science and Metallurgy Engineering, 4(1), 1-15. https://doi.org/10.12691/msme-4-1-1.

48. Prazmowski, M., Paul, H., Rozumek, D., & Marcisz, E. (2014). Influence of the microstructure near the interface on the fatigue life of explosively welded carbon steel/Zr clads. Key Engineering Materials, 592–593, 704–707. DOI: https://doi.org/10.4028/www.scientific.net/KEM.592-593.704

49. Blazéj T. Skoczén (PhD, DSc), (2004), CERN, European Organization for Nuclear Research, Department of Accelerator Technologies, CH-1211 Geneva 23, Switzerland and Cracow University of Technology, Institute of Applied Mechanics, Al. Jana Pawla II 37, PL-31-864 Kraków, Poland. ISBN 978-642-06066-3, http://doi10.1007/978-3-662-06305-7.

50. Skoblik, R., Rydz, D., & Stradomski, G. (2010). Analysis of asymmetrical rolling process of multilayer plates. In Solid State Phenomena (Vol. 165, pp. 348–352). Trans Tech Publications Ltd. DOI: https://doi.org/10.4028/www.scientific.net/SSP.165.348

51. Stradomski, G., Rydz, D., Garstka, T., Pałega, M., Dyl, T., Szarek, A., Szarek, J. Ł., & Dembiczak, T. (2022). Influence of asymmetric rolling process on the microstructure properties of bimetallic sheet metals. Materials, 15(6), 2013. https://doi.org/10.3390/ma15062013. DOI: https://doi.org/10.3390/ma15062013

52. Alaneme, K. K., & Okotete, E. A. (2019). Recrystallization mechanisms and microstructure development in emerging metallic materials: A review. Journal of Science: Advanced Materials and Devices. DOI: https://doi.org/10.1016/j.jsamd.2018.12.007

53. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., & Jonas, J. J. (2013). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2013.09.002. DOI: https://doi.org/10.1016/j.pmatsci.2013.09.002

54. Tang, S., Li, X., Li, J., Liu, Z., & Wang, G. (2022). Role of microalloying elements on recrystallization kinetics of cold-rolled high strength low alloy steels. Metals, 12(10), 1741. https://doi.org/10.3390/met12101741. DOI: https://doi.org/10.3390/met12101741

55. Akbari, Z., Mirzadeh, H., & Cabrera, J.-M. (2014). A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Materials and Design. https://doi.org/10.1016/j.matdes.2015.04.005. DOI: https://doi.org/10.1016/j.matdes.2015.04.005

56. Cabrera, J. M., Al Omar, A., & Prack, J. M. (s.f.). (1997), Simulación de la fluencia en caliente de un acero microaleado con un contenido medio de carbono - II parte. Recristalización dinámica: inicio y cinética. Consejo Superior de Investigaciones Científicas. DOI: https://doi.org/10.3989/revmetalm.1997.v33.i3.857

57. Alcelay, I., Peña, E., & Al Omar, A. (s.f.), (2016), Estudio del comportamiento termo-mecánico de un acero microaleado de medio carbono durante un proceso de conformado en caliente usando una red neuronal artificial. Departamento de Ingeniería Mecánica, EPSEM, Universidad Politécnica de Cataluña. DOI: https://doi.org/10.3989/revmetalm.066

58. Kostryzhev, A., Killmore, C., & Pereloma, E. (2021). Effect of processing parameters on interphase precipitation and mechanical properties in novel Cr, V, Nb microalloyed steel. Metals, 11(107). https://doi.org/10.3390/met11010107. DOI: https://doi.org/10.3390/met11010107

59. Dutta, B., & Palmiere, E. J. (2003). Effect of prestrain and deformation temperature on the recrystallization behavior of steels microalloyed with niobium. Metallurgical and Materials Transactions A. DOI: https://doi.org/10.1007/s11661-003-0234-6

60. Al Omar, A. (1996). Caracterización dinámica de dos aceros microaleados de medio carbono mediante ensayos de compresión a alta temperatura. Aplicación de mapas de procesado. Tesis doctoral, Universitat Politècnica de Catalunya.

61. Altamirano Guerrero, G. (2014). Estudio de la deformación plástica en caliente de aceros avanzados de ultra-alta resistencia (AUHSS) microaleados con boro. Tesis doctoral, Universidad Michoacana de San Nicolás de Hidalgo.

62. Cabrera Marrero, J. M. (1995). Caracterización mecánico-metalúrgica de la conformación en caliente del acero microaleado de medio carbono 38MnSiVS5. Tesis doctoral, Universitat Politècnica de Catalunya.

63. Zhang, Z.-H., Liu, Y.-N., Liang, X.-K., & She, Y. (2008). The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel. Materials Science and Engineering A, 474, 254–260. https://doi.org/10.1016/j.msea.2007.04.062. DOI: https://doi.org/10.1016/j.msea.2007.04.041

64. Perrard, F., & Scott, C. (2007). Vanadium precipitation during intercritical annealing in cold rolled TRIP steels. Automotive Research Center, Arcelor Research S.A. DOI: https://doi.org/10.2355/isijinternational.47.1168

65. Mondi, P. R., Sarma, V. S., & Sankaran, S. (2011). Development of ultra-fine grained dual phase microalloyed steels through severe cold rolling and intercritical annealing. Indian Institute of Technology Madras, 64, 89-92. DOI: https://doi.org/10.1007/s12666-011-0018-4

66. Papa Rao, M., Subramanya Sarma, V., & Sankaran, S. (2016). Microstructure and mechanical properties of V-Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing. Metallurgical and Materials Transactions A. DOI: https://doi.org/10.1007/s11661-016-3889-5

67. Akhtar, M. N., Khan, M., Khan, S. A., Afzal, A., Subbiah, R., Ahmad, S. N., Husain, M., Butt, M. M., Othman, A. R., & Bakar, E. A. (2021). Determination of non-recrystallization temperature for niobium microalloyed steel. Materials, 14(2639). https://doi.org/10.3390/ma14102639. DOI: https://doi.org/10.3390/ma14102639

68. Kreyca, J., Kahlenberg, R., Jacob, A., Kozeschnik, E., & Povoden-Karadeniz, E. (2023). Analysis of recrystallization kinetics concerning the experimental, computational, and empirical evaluation of critical temperatures for static recrystallization in Nb, Ti, and V microalloyed steels. Metals, 13(884). https://doi.org/10.3390/met13050884.

69. Zhang, Q., Huo, X., Li, L., Chen, S., & Lu, C. (2022). Correlation between precipitation and recrystallisation during stress relaxation in titanium microalloyed steel. Metals, 12(1920). https://doi.org/10.3390/met12111920. DOI: https://doi.org/10.3390/met12111920

70. Zhao, Y., Zheng, J., Chen, L., & Liu, X. (2022). Static recrystallization behavior of low-carbon Nb-V-microalloyed forging steel. Metals, 12(1745). https://doi.org/10.3390/met12101745. DOI: https://doi.org/10.3390/met12101745

71. Kaikkonen, P. M., Somani, M. C., Karjalainen, L. P., & Kömi, J. I. (2021). Flow stress behaviour and static recrystallization characteristics of hot deformed austenite in microalloyed medium-carbon bainitic steels. Metals, 11(138). https://doi.org/10.3390/met11010138. DOI: https://doi.org/10.3390/met11010138

72. Mayo, U., Isasti, N., Rodríguez-Ibabe, J. M., & Uranga, P. (2019). Interaction between microalloying additions and phase transformation during intercritical deformation in low carbon steels. Metals, 9(10), 1049. https://doi.org/10.3390/met9101049. DOI: https://doi.org/10.3390/met9101049

73. Klančnik, G., Foder, J., Bradaškja, B., Kralj, M., Klančnik, U., Lalley, P., & Stalheim, D. (2022). Hot deformation behavior of C-Mn steel with incomplete recrystallization during roughing phase with and without Nb addition. Metals, 12(10), 1597. https://doi.org/10.3390/met12101597. DOI: https://doi.org/10.3390/met12101597

74. Xue, H., Yuan, H., Guo, K., Zhang, Z., & Zhang, M. (2021). Microstructure evolution and recrystallization temperature change of cold-rolled Fe–19Mn–0.6C twinning-induced plasticity steel during annealing. Metals, 11(8), 1181. https://doi.org/10.3390/met11081181. DOI: https://doi.org/10.3390/met11081181

75. Krbat’a, M., Eckert, M., Križan, D., Barényi, I., & Mikušová, I. (2019). Hot deformation process analysis and modelling of X153CrMoV12 steel. Metals, 9(10), 1125. https://doi.org/10.3390/met9101125. DOI: https://doi.org/10.3390/met9101125

76. Sobotka, E., Kreyca, J., Kahlenberg, R., Jacob, A., Kozeschnik, E., & Povoden-Karadeniz, E. (2023). Analysis of recrystallization kinetics concerning the experimental, computational, and empirical evaluation of critical temperatures for static recrystallization in Nb, Ti, and V microalloyed steels. Metals, 13(5), 884. https://doi.org/10.3390/met13050884. DOI: https://doi.org/10.3390/met13050884

77. Homsher, C. N., & Van Tyne, C. J. (2013). Empirical equations for the no-recrystallization temperature in hot rolled steel plates. Materials Science and Technology (MS&T) 2013, October 27-31, Montreal, Quebec, Canada.

78. Park, M., Kang, M. S., Park, G. W., Choi, E. Y., Kim, H. C., Moon, H. S., Jeon, J. B., Kim, H., Kwon, S. H., & Kim, B. J. (2019). The effects of recrystallization on strength and impact toughness of cold-worked high-Mn austenitic steels. Metals, 9(9), 948. https://doi.org/10.3390/met9090948. DOI: https://doi.org/10.3390/met9090948

79. Sharifi, S. S., Bakhtiari, S., Shahryari, E., Sommitsch, C., & Poletti, M. C. (2024). The influence of thermomechanical conditions on the hot ductility of continuously cast microalloyed steels. Materials, 17(18), 4551. https://doi.org/10.3390/ma17184551. DOI: https://doi.org/10.3390/ma17184551

80. Sauer, M., Fabík, R., Schindler, I., Kawulok, P., Opěla, P., Kawulok, R., Vodárek, V., & Rusz, S. (2023). Analysis of the microstructure development of Nb-microalloyed steel during rolling on a heavy-section mill. Materials, 16(1), 288. https://doi.org/10.3390/ma16010288. DOI: https://doi.org/10.3390/ma16010288

81. Luo, L., Zhang, J., Fu, H., Chen, F., Qin, J., & Li, Y. (2024). Effects of partially replacing Mo with Nb on the microstructure and properties of high-strength low-alloy steel during reverse austenization. Metals, 14(8), 896. https://doi.org/10.3390/met14080896. DOI: https://doi.org/10.3390/met14080896

82. Mohrbacher, H. (2019). Metallurgical effects of niobium and molybdenum on heat-affected zone toughness in low-carbon steel. Applied Sciences, 9(9), 1847. https://doi.org/10.3390/app9091847. DOI: https://doi.org/10.3390/app9091847

83. Zaitsev, A., Koldaev, A., Arutyunyan, N., Dunaev, S., & D’yakonov, D. (2020). Effect of the chemical composition on the structural state and mechanical properties of complex microalloyed steels of the ferritic class. Processes, 8(6), 646. https://doi.org/10.3390/pr8060646. DOI: https://doi.org/10.3390/pr8060646

84. Zurutuza, I., Isasti, N., Detemple, E., Schwinn, V., Mohrbacher, H., & Uranga, P. (2021). Effect of Nb and Mo additions in the microstructure/tensile property relationship in high-strength quenched and quenched and tempered boron steels. Metals, 11(1), 29. https://doi.org/10.3390/met11010029. DOI: https://doi.org/10.3390/met11010029

85. Xing, J., Zhu, G., Wu, B., Ding, H., & Pan, H. (2022). Effect of Ti addition on the precipitation mechanism and precipitate size in Nb-microalloyed steels. Metals, 12(2), 245. https://doi.org/10.3390/met12020245. DOI: https://doi.org/10.3390/met12020245

86. Ghanaei, A., Edris, H., Monajati, H., & Hamawandi, B. (2023). The effect of adding V and Nb microalloy elements on the bake hardening properties of ULC steel before and after annealing. Materials, 16(4), 1716. https://doi.org/10.3390/ma16041716. DOI: https://doi.org/10.3390/ma16041716

87. Han, R., Yang, G., Xu, D., Jiang, L., Fu, Z., & Zhao, G. (2022). Effect of V on the precipitation behavior of Ti-Mo microalloyed high-strength steel. Materials, 15(17), 5965. https://doi.org/10.3390/ma15175965. DOI: https://doi.org/10.3390/ma15175965

88. Cong, T., Jiang, B., Zou, Q., & Yao, S. (2023). Influence of microalloying on the microstructures and properties of spalling-resistant wheel steel. Materials, 16(5), 1972. https://doi.org/10.3390/ma16051972. DOI: https://doi.org/10.3390/ma16051972

89. Villalobos, J. C., Del-Pozo, A., Campillo, B., Mayen, J., & Serna, S. (2018). Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals, 8(5), 351. https://doi.org/10.3390/met8050351. DOI: https://doi.org/10.3390/met8050351

90. Oja, O., Saastamoinen, A., Patnamsetty, M., Honkanen, M., Peura, P., & Järvenpää, M. (2019). Microstructure and mechanical properties of Nb and V microalloyed TRIP-assisted steels. Metals, 9(8), 887. https://doi.org/10.3390/met9080887. DOI: https://doi.org/10.3390/met9080887

91. Zhao, T., Hao, X., Wang, Y., Chen, C., & Wang, T. (2023). Influence of thermo-mechanical process and Nb-V microalloying on microstructure and mechanical properties of Fe–Mn–Al–C austenitic steel. Coatings, 13(9), 1513. https://doi.org/10.3390/coatings13091513. DOI: https://doi.org/10.3390/coatings13091513

91. Zaitsev, A., & Arutyunyan, N. (2021). Low-carbon Ti-Mo microalloyed hot rolled steels: Special features of the formation of the structural state and mechanical properties. Metals, 11(10), 1584. https://doi.org/10.3390/met11101584. DOI: https://doi.org/10.3390/met11101584

92. Politecnico di Torino. (2020-2021). Niobium-alloyed steels for automotive transmission and powertrain applications (master’s thesis). DIMEAS – Department of Mechanical and Aerospace Engineering.

93. Louchet, F., Weiss, J., & Richeton, T. (2006). Hall-Petch law revisited in terms of collective dislocation dynamics. Physical Review Letters, 97, 075504. https://doi.org/10.1103/PhysRevLett.97.075504. DOI: https://doi.org/10.1103/PhysRevLett.97.075504

94. Rodríguez Baracaldo, R., Cabrera Marrero, J. M., & Benito Páramo, J. A. (s.f.). Estudio de la relación Hall-Petch en aceros (0,6% C) submicrométricos.

95. Armstrong, R. W. (2014). 60 Years of Hall-Petch: Past to Present Nano-Scale Connections. Materials Transactions, 55(1), 2-12. https://doi.org/10.2320/matertrans.55.2. DOI: https://doi.org/10.2320/matertrans.MA201302

96. de las Cuevas, F., Ferraiuolo, A., Karjalainen, L. P., & Gil Sevillano, J. (2014). Propiedades mecánicas a tracción y mecanismos de endurecimiento de un acero TWIP a altas velocidades de deformación: relación de Hall-Petch. Revista de Metalurgia, 50(4), e031. https://doi.org/10.3989/revmetalm.031. DOI: https://doi.org/10.3989/revmetalm.031

97. Kato, M. (2014). Hall-Petch Relationship and Dislocation Model for Deformation of Ultrafine-Grained and Nanocrystalline Metals. Materials Transactions, 55(1), 19-24. https://doi.org/10.2320/matertrans.55.19. DOI: https://doi.org/10.2320/matertrans.MA201310

98. Moreno Gómez, F. J. (2016). Procesos termomecánicos y precipitación en un acero HSLA. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica.

99. Akpan, E. I., & Haruna, I. A. (s.f.). Structural evolution and properties of hot rolled steel alloys. Department of Materials and Production Engineering, Ambrose Alli University, Ekpoma, Edo State, Nigeria.

100. Altuna, M. A., Iza-Mendia, A., & Gutiérrez, I. (2012). Precipitation of Nb in ferrite after austenite conditioning. Part II: Strengthening contribution in high-strength low-alloy (HSLA) steels. Metallurgical and Materials Transactions A, 43, 4054-4066. https://doi.org/10.1007/s11661-012-1270-x. DOI: https://doi.org/10.1007/s11661-012-1270-x

101. García-Sesma, L., López, B., & Pereda, B. (2020). Effect of high Ti contents on austenite microstructural evolution during hot deformation in low carbon Nb microalloyed steels. Metals, 10(165). https://doi.org/10.3390/met10020165. DOI: https://doi.org/10.3390/met10020165

102. Yan, Y., Xue, Y., Liu, K., Yu, W., Shi, J., & Wang, M. (2024). Unified solid solution product of [Nb][C] in Nb-microalloyed steels with various carbon contents. Materials, 17(3369). https://doi.org/10.3390/ma17133369. DOI: https://doi.org/10.3390/ma17133369

103. Kayron Lima Silva, Samuel Filgueiras Rodrigues, Glaucia Maria Evangelista Macedo, Bruno Leonardy Sousa Lopes, Clodualdo Aranas, Fulvio Siciliano, Gedeon Silva Reis, Eden Santos Silva, (2021) Solubility product of a Nb–N bearing austenitic stainless-steel biomaterial, Journal of Materials Research and Technology, Volume 15, pp 5864-5879, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2021.11.033. DOI: https://doi.org/10.1016/j.jmrt.2021.11.033

104. Huo, L., Gao, J., Li, Y., Xu, P., Wei, X., & Ma, T. (2025). Effect of Nb alloying and solution treatment on the mechanical properties of cold-rolled Fe-Mn-Al-C low-density steel. Metals, 15(102). https://doi.org/10.3390/met15020102. DOI: https://doi.org/10.3390/met15020102

105. Dikić, S., Glišić, D., Fadel, A., Jovanović, G., & Radović, N. (2021). Structure and strength of isothermally heat-treated medium carbon Ti-V microalloyed steel. Metals, 11(1011). https://doi.org/10.3390/met11071011. DOI: https://doi.org/10.3390/met11071011

106. Larzabal, G., Isasti, N., Rodriguez-Ibabe, J. M., & Uranga, P. (2017). Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb-Mo and Ti-Mo microalloyed steels. Metals, 7(65). https://doi.org/10.3390/met7020065. DOI: https://doi.org/10.3390/met7020065

107. Liu, H., Yang, B., Chen, Y., Li, C., & Liu, C. (2022). Precipitation law of vanadium in microalloyed steel and its performance influencing factors. Materials, 15(8146). https://doi.org/10.3390/ma15228146.

108. Ma, G., Chen, Y., Wu, G., Wang, S., Li, T., Liu, W., Wu, H., Gao, J., Zhao, H., Zhang, C., et al. (2023). The effects of microalloying on the precipitation behavior and strength mechanisms of X80 high-strength pipeline steel under different processes. Crystals, 13(714). https://doi.org/10.3390/cryst13050714. DOI: https://doi.org/10.3390/cryst13050714

109. Maetz, J.-Y., Militzer, M., Wen Chen, Y., Yang, J.-R., Goo, N. H., Kim, S. J., Jian, B., & Mohrbacher, H. (2018). Modeling of precipitation hardening during coiling of Nb–Mo steels. Metals, 8(758). https://doi.org/10.3390/met8100758. DOI: https://doi.org/10.3390/met8100758

110. Li, K., Shao, J., Yao, C., Jia, P., Xie, S., Chen, D., & Xiao, M. (2024). Effect of Nb-Ti microalloyed steel precipitation behavior on hot rolling strip shape and FEM simulation. Materials, 17(651). https://doi.org/10.3390/ma17030651. DOI: https://doi.org/10.3390/ma17030651

111. Cui, P., Xing, G., Nong, Z., Chen, L., Lai, Z., Liu, Y., & Zhu, J. (2022). Recent advances on composition-microstructure-properties relationships of precipitation hardening stainless steel. Materials, 15(8443). https://doi.org/10.3390/ma15238443. DOI: https://doi.org/10.3390/ma15238443

112. Zhang, Z., Wang, Z., Li, Z., & Sun, X. (2023). Microstructure evolution and precipitation behavior in Nb and Nb-Mo microalloyed fire-resistant steels. Metals, 13(112). https://doi.org/10.3390/met13010112. DOI: https://doi.org/10.3390/met13010112

113. Morrison, W. B. (2009). Microalloy steels – the beginning. Journal of Physical Metallurgy of Steel, 25, 1-15. DOI: https://doi.org/10.1179/174328409X453299

114. Okamoto, R. & Borgenstam, Annika & Ågren, John. (2010). Interphase precipitation in niobium-microalloyed steels. Acta Materialia - ACTA MATER. 58. 4783-4790. http://doi:10.1016/j.actamat.2010.05.014. DOI: https://doi.org/10.1016/j.actamat.2010.05.014

115. Zhong, N., Wang, X. D., Wang, L., & Rong, Y. H. (2009). Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process. Material Science and Engineering A. DOI: https://doi.org/10.1016/j.msea.2008.11.014

116. Cong, J., Li, J., Fan, J., Liu, P., Misra, R. D. K., Shang, C., & Wang, X. (2020). The impact of interphase precipitation on the mechanical behavior of fire-resistant steels at an elevated temperature. Materials, 13(4294). https://doi.org/10.3390/ma13194294. DOI: https://doi.org/10.3390/ma13194294

117. Klinkenberg, Christian & Hulka, Klaus & Bleck, Wolfgang. (2004). Niobium Carbide Precipitation in Microalloyed Steel. Steel Research International. 75. 744-752. http://doi10.1002/srin.200405837. DOI: https://doi.org/10.1002/srin.200405837

118. Jeong, J.-Y., Hong, D.-G., & Yim, C.-H. (2022). Deep learning to predict deterioration region of hot ductility in high-Mn steel by using the relationship between RA behavior and time-temperature-precipitation. Metals, 12(1689). https://doi.org/10.3390/met12101689. DOI: https://doi.org/10.3390/met12101689

119. Song, S., Tian, J., Xiao, J., Fan, L., Yang, Y., Yuan, Q., Gan, X., & Xu, G. (2022). Effect of vanadium and strain rate on hot ductility of low carbon microalloyed steels. Metals, 12(14). https://doi.org/10.3390/met12010014. DOI: https://doi.org/10.3390/met12010014

120. Salas-Reyes, A. E., Altamirano-Guerrero, G., Deaquino, R., Salinas, A., Lara-Rodriguez, G., Figueroa, I. A., González-Parra, J. R., & Mintz, B. (2023). The hot ductility, microstructures, mechanical properties and corrosion resistance in an advanced boron-containing complex phase steel heat-treated using the quenching and partitioning (Q&P) process. Metals, 13(257). https://doi.org/10.3390/met13020257. DOI: https://doi.org/10.3390/met13020257

121. Mintz, B.; Qaban, A. The Influence of Precipitation, High Levels of Al, Si, P, and a Small B Addition on the Hot Ductility of TWIP and TRIP Assisted Steels: A Critical Review. Metals 2022, 12, 502. https://doi.org/10.3390/met12030502. DOI: https://doi.org/10.3390/met12030502

122. Wang, Z.; Wang, Y.; Wang, C. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates. Materials 2018, 11, 1026. https://doi.org/10.3390/ma11061026. DOI: https://doi.org/10.3390/ma11061026

123. Abdelhalim, A.; Guedri, A.; Darsoun, L.; Belyamna, M. A. Fracture Mechanisms of Micro-Alloy Steel at Elevated Temperature. International Journal of Membrane Science and Technology 2023, 10(5), 14–23. DOI: https://doi.org/10.15379/ijmst.v10i5.2359

124. Grajcar, A.; Morawiec, M.; Zalecki, W. Austenite Decomposition and Precipitation Behavior of Plastically Deformed Low-Si Microalloyed Steel. Metals 2018, 8, 1028. https://doi.org/10.3390/met8121028. DOI: https://doi.org/10.3390/met8121028

125. Quispe, A. B.; Medina, S. F. Diagrama de Recristalización-Precipitación-Tiempo-Temperatura (RPTT) de un acero microaleado al vanadio. Consejo Superior de Investigaciones Científicas. Licencia Creative Commons 3.0 España (BY-NC).

126. Yang, L.; Li, Y.; Xue, Z.; Cheng, C. Effect of Different Thermal Schedules on Ductility of Microalloyed Steel Slabs during Continuous Casting. Metals 2019, 9, 37. https://doi.org/10.3390/met9010037. DOI: https://doi.org/10.3390/met9010037

127. Liu, H.; Yang, B.; Chen, Y.; Li, C.; Liu, C. Precipitation Law of Vanadium in Microalloyed Steel and Its Performance Influencing Factors. Materials 2022, 15, 8146. https://doi.org/10.3390/ma15228146. DOI: https://doi.org/10.3390/ma15228146

128. Claesson, E.; Magnusson, H.; Kohlbrecher, J.; Thuvander, M.; Lindberg, F.; Andersson, M.; Hedström, P. Carbide Precipitation during Processing of Two Low-Alloyed Martensitic Tool Steels with 0.11 and 0.17 V/Mo Ratios Studied by Neutron Scattering, Electron Microscopy and Atom Probe. Metals 2022, 12, 758. https://doi.org/10.3390/met12050758. DOI: https://doi.org/10.3390/met12050758

129. Wang, X., Li, Z., Zhou, S., Chen, R., Da, G., Yong, Q., Yang, Z., Shen, J., Shang, C., & Liu, Q. (2021). The influence of temperature on the microstructure and properties of Nb-V-Ti-Mo complex microalloyed high-strength fire-resistant steel. Metals, 11(11), 1670. https://doi.org/10.3390/met11111670. DOI: https://doi.org/10.3390/met11111670

130. Revista Facultad de Ingeniería Universidad de Antioquia. (2011). JMat–Herramienta remota de cálculo y multiusuario para el aprendizaje basado en problemas usando Matlab. Revista Facultad de Ingeniería Universidad de Antioquia, (59), 158-169.

131. Valencia Morales, E. (Ed.). (2011). Alloy Steel – Properties and Use Edited, Published by InTech, Janeza Trdine 9, 51000 Rijeka, Croatia. ISBN: 978-953-307-484-9.

132. Abad, R., Fernández, A. I., López, B., & Rodríguez-Ibabe, J. M. (1999). Interaction between recrystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel. CEIT and ESI (University of Navarra), Donostia-San Sebastián, Basque Country, Spain.

133. Yang, Y., Zhao, X. M., Dong, C. Y., & Zhao, X. Y. (2020). Influence of hot deformation and precipitates on the recrystallization of Nb-V-Ti free-cutting steel. Metals, 10(12), 1587. https://doi.org/10.3390/met10121587. DOI: https://doi.org/10.3390/met10121587

134. He, C., Wang, J., Chen, Y., Yu, W., & Tang, D. (2020). Effects of Sn and Sb on the hot ductility of Nb+Ti microalloyed steels. Metals, 10(12), 1679. https://doi.org/10.3390/met10121679. DOI: https://doi.org/10.3390/met10121679

135. Rešković, S., Slokar Benić, L., & Lovrenić-Jugov, M. (2020). The interdependence of the degree of precipitation and dislocation density during the thermomechanical treatment of microalloyed niobium steel. Metals, 10(2), 294. https://doi.org/10.3390/met10020294. DOI: https://doi.org/10.3390/met10020294

136. Chen, S., Li, L., Xia, J., Peng, Z., Gao, J., & Sun, H. (2020). Recrystallization–precipitation interaction of a Ti microalloyed steel with controlled rolling process. Journal of Physics: Conference Series, 1676(1), 012036. https://doi.org/10.1088/1742-6596/1676/1/012036. DOI: https://doi.org/10.1088/1742-6596/1676/1/012036

137. Medina, S. F., Ouispe, A., Valles, P., & Baños, J. L. (1999). Recrystallization-precipitation interaction in carbon niobium microalloyed steels. ISIJ International, 39(9), 913-921. https://doi.org/10.2355/isijinternational.39.913. DOI: https://doi.org/10.2355/isijinternational.39.913

138. Scharifi, E., Shoshmina, D., Biegler, S., Weidig, U., & Steinhoff, K. (2021). Influence of hot deformation on the precipitation hardening of high-strength aluminum AA7075 during thermo-mechanical processing. Metals, 11(5), 681. https://doi.org/10.3390/met11050681. DOI: https://doi.org/10.3390/met11050681

139. Tao, K., Xu, J., Zhang, D., Zhang, A., Su, G., & Zhang, J. (2023). Effect of final thermomechanical treatment on the mechanical properties and microstructure of T phase hardened Al-5.8Mg-4.5Zn-0.5Cu alloy. Materials, 16(8), 3062. https://doi.org/10.3390/ma16083062. DOI: https://doi.org/10.3390/ma16083062

140. Zener, C. (1949). Private communication to C. S. Smith. Transactions of the American Institute of Mining and Metallurgical Engineers, 175(15), 15–51, pp. 15–51, by C.S. Smith. DOI: https://doi.org/10.1080/01944364908978932

141. Lu, J. (2009). Quantitative microstructural characterization of microalloyed steels (Doctoral dissertation, University of Alberta). https://doi.org/10.7939/R37425.

142. Scharifi, E., Nietsch, J. A., Quadfasel, A., Weidig, U., & Steinhoff, K. (2022). Effect of thermo-mechanically activated precipitation on the hot deformation behavior of high-strength aluminum alloy AA7075. Metals, 12(10), 1609. https://doi.org/10.3390/met12101609. DOI: https://doi.org/10.3390/met12101609

143. Zuo, J., Hou, L., Shu, X., Peng, W., Yin, A., & Zhang, J. (2020). Effect of deformation on precipitation and the microstructure evolution during multistep thermomechanical processing of Al-Zn-Mg-Cu alloy. Metals, 10(11), 1409. https://doi.org/10.3390/met10111409. DOI: https://doi.org/10.3390/met10111409

144. Dölling, J., Kuglstatter, M., Prahl, U., Höppel, H. W., Ortner, P., Ott, B., Kracun, S. F., Fehlbier, M., & Zilly, A. (2024). Analyzing the precipitation effects in low-alloyed copper alloys containing hafnium and chromium. Metals, 14(3), 258. https://doi.org/10.3390/met14030258. DOI: https://doi.org/10.3390/met14030258

145. Palmier, E. J., García, C. I., & DeArdo, A. J. (1992). Static recrystallization and precipitation during the hot deformation of austenite. Basic Metals Processing Research Institute, Department of Materials Science and Engineering, University of Pittsburgh.

Published

2025-07-30

How to Cite

Zúñiga Pineda, L. F., Guerrero Mata, M. P., & García Rincón, O. (2025). Study of precipitation during the hot rolling process of a high-alloy, high-strength steel. Revista Ingenierías, 28(99), 46–73. https://doi.org/10.29105/ingenierias28.99-974