Study of the nanoindentation of SiO₂–TiO₂ thin coatings
DOI:
https://doi.org/10.29105/ingenierias29.100-975Keywords:
Nanoindentation, aluminum 6061-T6, SiO2-TiO2, Finite Elements AnalysisAbstract
Aluminum alloys, particularly Al 6061-T6, are widely used in structural applications due to their remarkable mechanical properties. However, their relatively low hardness and corrosion resistance limit their use in aggressive environments. To address these drawbacks, this study investigates the deposition of SiO₂–TiO₂ thin films on Al 6061-T6 substrates using the sol-gel method to enhance their mechanical and electrochemical performance. Nanoindentation tests were conducted to determine hardness and elastic modulus. Additionally, a finite element model (FEM) was developed to simulate the nanoindentation process using an axisymmetric 2D geometry. The experimental results revealed an elastic modulus of 79.69 GPa for the coated system, indicating a significant improvement over the uncoated substrate. The numerical simulation successfully replicated the experimental load-displacement curves and provided insights into the stress distribution and deformation mechanisms. This combined experimental-numerical approach offers a robust methodology for analyzing the mechanical behavior of thin films and contributes to the optimization of protective coatings for lightweight structural materials.
Downloads
References
1. Gamez, J., Reyes-Osorio, L., Zapata, O., Cabriales, R., Lopez, L., & Delgado-Pamanes, M. (2024). Study of protective hard coatings of SiO2-TiO on aluminum substrates. AIMS Materials Science, 11(2), 200-215. https://doi.org/10.3934/matersci.2024011 DOI: https://doi.org/10.3934/matersci.2024011
2. Musza, A., Ugi, D., Vida, Á., & Chinh, N. Q. (2022). Study of Anodic Film’s Surface and Hardness on A356 Aluminum Alloys, Using Scanning Electron Microscope and In-Situ Nanoindentation. Coatings, 12(10), 1528. https://doi.org/10.3390/coatings12101528 DOI: https://doi.org/10.3390/coatings12101528
3. Filippov, P., Kiderlen, S., & Koch, U. (2020). Preparation of the Surfaces of High-Purity Polycrystalline Aluminum for the Mechanical Analysis by Means of Nanoindentation. Practical Metallography, 57(6), 397-414. https://doi.org/10.3139/147.110633 DOI: https://doi.org/10.3139/147.110633
4. Liberini, M., De Falco, G., Scherillo, F., Astarita, A., Commodo, M., Minutolo, P., D’Anna, A., & Squillace, A. (2016). Nano-TiO2 coatings on aluminum surfaces by aerosol flame synthesis. Thin Solid Films, 609, 53-61. https://doi.org/10.1016/j.tsf.2016.04.025 DOI: https://doi.org/10.1016/j.tsf.2016.04.025
5. Gutiérrez, M., Reyes, L., Bermúdez-Reyes, B., Guerra-Fuentes, L., & Robledo, P. C. Z. (2019). RECUBRIMIENTOS NANOESTRUCTURADOS SIO2-TIO2 EN ALEACIONES DE ALUMINIO 6061-T6. Revista Ciencia UANL, 22(96), 48-53. https://doi.org/10.29105/cienciauanl22.96-3 DOI: https://doi.org/10.29105/cienciauanl22.96-3
6. Zhang, W., Li, J., Xing, Y., Nie, X., Lang, F., Yang, S., Hou, X., & Zhao, C. (2020). Experimental Study on the Thickness-Dependent Hardness of SiO2 Thin Films Using Nanoindentation. Coatings, 11(1), 23. https://doi.org/10.3390/coatings11010023 DOI: https://doi.org/10.3390/coatings11010023
7. Alaboodi, A. S., & Hussain, Z. (2017). Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal Of King Saud University - Engineering Sciences, 31(1), 61-69. https://doi.org/10.1016/j.jksues.2017.02.001
8. Cheng, S., Chen, B., Jian, S., Hu, Y., Le, P. H., Tuyen, L. T. C., Lee, J., & Juang, J. (2022). Finite Element Analysis of Nanoindentation Responses in Bi2Se3 Thin Films. Coatings, 12(10), 1554. https://doi.org/10.3390/coatings12101554 DOI: https://doi.org/10.3390/coatings12101554
9. Abdulaziz S. Alaboodi, Zahid Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal of King Saud University – Engineering Sciences 31 (2019) 61–69 http://dx.doi.org/10.1016/j.jksues.2017.02.001 DOI: https://doi.org/10.1016/j.jksues.2017.02.001
10. Ilona Pavlovska et al. Hard TiO2–SiO2 sol–gel coatings for enamel against chemical corrosion. Surface & Coatings Technology 258 (2014) 206–210 http://dx.doi.org/10.1016/j.surfcoat.2014.09.027 DOI: https://doi.org/10.1016/j.surfcoat.2014.09.027
11. G. M. Pharr, W. C. Oliver, “Measurement of Thin Film Mechanical Properties Using Nanoindentation”, MRS Bull., Vol. 17, No. 7, 1992, pp. 28–33. DOI: https://doi.org/10.1557/S0883769400041634
12. ASM Handbook Committee (1991). "Heat Treating of Aluminum Alloys". Volume 4: Heat Treating. ASM. pp. 871. doi:10.1361/asmhba0001205. https://dx.doi.org/10.1361%2Fasmhba0001205
13. Hatch, John (1984). "Microstructure of Alloys". Aluminum: Properties and Physical Metallurgy. ASM International. pp. 54–104. ISBN 9780871701763.
14. Milton Ohring, “Materials Science of thin films Deposition and Structure”, Rev. Academic Press, Second edition, London, UK, 2002, pp. 718-720.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Alejandra Vallejo, Luis Arturo, Ivan Moreno, Luis Alberto López Pavón

This work is licensed under a Creative Commons Attribution 4.0 International License.