Study of the nanoindentation of SiO₂–TiO₂ thin coatings

Authors

  • Alejandra Vallejo Martinez Universidad Autónoma de Nuevo León
  • Luis Arturo Reyes Osorio Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-9305-8281
  • Iván Eleazar Moreno Cortez Universidad Autónoma de Nuevo León
  • Luis Alberto López Pavón Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-7975-4571

DOI:

https://doi.org/10.29105/ingenierias29.100-975

Keywords:

Nanoindentation, aluminum 6061-T6, SiO2-TiO2, Finite Elements Analysis

Abstract

Aluminum alloys, particularly Al 6061-T6, are widely used in structural applications due to their remarkable mechanical properties. However, their relatively low hardness and corrosion resistance limit their use in aggressive environments. To address these drawbacks, this study investigates the deposition of SiO₂–TiO₂ thin films on Al 6061-T6 substrates using the sol-gel method to enhance their mechanical and electrochemical performance. Nanoindentation tests were conducted to determine hardness and elastic modulus. Additionally, a finite element model (FEM) was developed to simulate the nanoindentation process using an axisymmetric 2D geometry. The experimental results revealed an elastic modulus of 79.69 GPa for the coated system, indicating a significant improvement over the uncoated substrate. The numerical simulation successfully replicated the experimental load-displacement curves and provided insights into the stress distribution and deformation mechanisms. This combined experimental-numerical approach offers a robust methodology for analyzing the mechanical behavior of thin films and contributes to the optimization of protective coatings for lightweight structural materials.

Downloads

Download data is not yet available.

Author Biographies

Alejandra Vallejo Martinez, Universidad Autónoma de Nuevo León

Graduate student in Engineering Sciences with a focus on Nanotechnology. Skills in finite element analysis, advanced materials characterization, and structural modeling.

Luis Arturo Reyes Osorio, Universidad Autónoma de Nuevo León

Master of Science in Mechanical Engineering with a specialization in Materials and PhD in Materials Engineering from the Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. Research Professor at FIME-UANL. Professional experience in the study and modeling of structures, advanced manufacturing, and mechanical processes.

Iván Eleazar Moreno Cortez, Universidad Autónoma de Nuevo León

Master of Science in Mechanical Engineering with a specialization in Materials and PhD in Materials Engineering from the Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León (FIME-UANL). Research Professor at FIME-UANL. He studies the morphological and catalytic properties of immobilized enzymes and their application in biosensors, delivery systems, and tissue engineering.

Luis Alberto López Pavón, Universidad Autónoma de Nuevo León

Master of Science in Mechanical Engineering with a specialization in Materials and PhD in Materials Engineering from the Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León (FIME-UANL). Research Professor at FIME-UANL. He investigates the phenomenon of superelasticity in Ni-free Ti-based alloys and nanostructured materials.

References

1. Gamez, J., Reyes-Osorio, L., Zapata, O., Cabriales, R., Lopez, L., & Delgado-Pamanes, M. (2024). Study of protective hard coatings of SiO2-TiO on aluminum substrates. AIMS Materials Science, 11(2), 200-215. https://doi.org/10.3934/matersci.2024011 DOI: https://doi.org/10.3934/matersci.2024011

2. Musza, A., Ugi, D., Vida, Á., & Chinh, N. Q. (2022). Study of Anodic Film’s Surface and Hardness on A356 Aluminum Alloys, Using Scanning Electron Microscope and In-Situ Nanoindentation. Coatings, 12(10), 1528. https://doi.org/10.3390/coatings12101528 DOI: https://doi.org/10.3390/coatings12101528

3. Filippov, P., Kiderlen, S., & Koch, U. (2020). Preparation of the Surfaces of High-Purity Polycrystalline Aluminum for the Mechanical Analysis by Means of Nanoindentation. Practical Metallography, 57(6), 397-414. https://doi.org/10.3139/147.110633 DOI: https://doi.org/10.3139/147.110633

4. Liberini, M., De Falco, G., Scherillo, F., Astarita, A., Commodo, M., Minutolo, P., D’Anna, A., & Squillace, A. (2016). Nano-TiO2 coatings on aluminum surfaces by aerosol flame synthesis. Thin Solid Films, 609, 53-61. https://doi.org/10.1016/j.tsf.2016.04.025 DOI: https://doi.org/10.1016/j.tsf.2016.04.025

5. Gutiérrez, M., Reyes, L., Bermúdez-Reyes, B., Guerra-Fuentes, L., & Robledo, P. C. Z. (2019). RECUBRIMIENTOS NANOESTRUCTURADOS SIO2-TIO2 EN ALEACIONES DE ALUMINIO 6061-T6. Revista Ciencia UANL, 22(96), 48-53. https://doi.org/10.29105/cienciauanl22.96-3 DOI: https://doi.org/10.29105/cienciauanl22.96-3

6. Zhang, W., Li, J., Xing, Y., Nie, X., Lang, F., Yang, S., Hou, X., & Zhao, C. (2020). Experimental Study on the Thickness-Dependent Hardness of SiO2 Thin Films Using Nanoindentation. Coatings, 11(1), 23. https://doi.org/10.3390/coatings11010023 DOI: https://doi.org/10.3390/coatings11010023

7. Alaboodi, A. S., & Hussain, Z. (2017). Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal Of King Saud University - Engineering Sciences, 31(1), 61-69. https://doi.org/10.1016/j.jksues.2017.02.001

8. Cheng, S., Chen, B., Jian, S., Hu, Y., Le, P. H., Tuyen, L. T. C., Lee, J., & Juang, J. (2022). Finite Element Analysis of Nanoindentation Responses in Bi2Se3 Thin Films. Coatings, 12(10), 1554. https://doi.org/10.3390/coatings12101554 DOI: https://doi.org/10.3390/coatings12101554

9. Abdulaziz S. Alaboodi, Zahid Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal of King Saud University – Engineering Sciences 31 (2019) 61–69 http://dx.doi.org/10.1016/j.jksues.2017.02.001 DOI: https://doi.org/10.1016/j.jksues.2017.02.001

10. Ilona Pavlovska et al. Hard TiO2–SiO2 sol–gel coatings for enamel against chemical corrosion. Surface & Coatings Technology 258 (2014) 206–210 http://dx.doi.org/10.1016/j.surfcoat.2014.09.027 DOI: https://doi.org/10.1016/j.surfcoat.2014.09.027

11. G. M. Pharr, W. C. Oliver, “Measurement of Thin Film Mechanical Properties Using Nanoindentation”, MRS Bull., Vol. 17, No. 7, 1992, pp. 28–33. DOI: https://doi.org/10.1557/S0883769400041634

12. ASM Handbook Committee (1991). "Heat Treating of Aluminum Alloys". Volume 4: Heat Treating. ASM. pp. 871. doi:10.1361/asmhba0001205. https://dx.doi.org/10.1361%2Fasmhba0001205

13. Hatch, John (1984). "Microstructure of Alloys". Aluminum: Properties and Physical Metallurgy. ASM International. pp. 54–104. ISBN 9780871701763.

14. Milton Ohring, “Materials Science of thin films Deposition and Structure”, Rev. Academic Press, Second edition, London, UK, 2002, pp. 718-720.

Published

2026-01-29

How to Cite

Vallejo Martinez, A., Reyes Osorio, L. A., Moreno Cortez, I. E., & López Pavón, L. A. (2026). Study of the nanoindentation of SiO₂–TiO₂ thin coatings. Revista Ingenierías, 29(100), 30–40. https://doi.org/10.29105/ingenierias29.100-975

Issue

Section

Artículos