Effect of strain rate on the viscoelastic response of 3D-printed ABS and PLA auxetic structures
DOI:
https://doi.org/10.29105/ingenierias29.100-983Keywords:
Auxetic, structure, viscoelasticity, PLA, ABSAbstract
Auxetic materials are characterized by a negative Poisson’s ratio, which allows them to expand laterally when stretched and contract when compressed. This unusual behavior does not arise from the base material itself, but from a specifically designed internal geometry, making auxetic structures attractive for energy absorption and vibration damping applications. In this work, cubic auxetic structures were fabricated by 3D printing using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) as base polymers. The viscoelastic behavior of both materials was characterized by dynamic mechanical analysis (DMA), while the mechanical response of the auxetic structures was evaluated through uniaxial compression tests at different deformation rates. The results show that, at room temperature, auxetic structures manufactured from ABS exhibit a stronger dependence on deformation rate compared to those made from PLA. This behavior is directly associated with the higher loss factor () of ABS, indicating a greater internal energy dissipation capacity. These findings highlight the direct relationship between the viscoelastic properties of the base polymer and the macroscopic mechanical response of 3D-printed auxetic structures, offering an accessible and educational perspective suitable for an academic engineering audience.
Downloads
References
1. L.-Q. Wang, J.-Z. Tong, Z.-S. Pan, K. E. Evans e J. Shen, “Poisson’s ratio control in auxetic metamaterials under large tensile strains,” International Journal of Mechanical Sciences, vol. 304, p. 110637, 2025. DOI: https://doi.org/10.1016/j.ijmecsci.2025.110637
2. Y. Zhang, W. Z. Jiang, W. Jiang, X. Y. Zhang, J. Dong, Y. M. Xie, K. E. Evans e X. Ren, “Recent Advances of Auxetic Metamaterials in Smart Materials and Structural Systems,” Advanced Functional Materials, vol. 35, p. 2421746, 2025. DOI: https://doi.org/10.1002/adfm.202421746
3. Y. Liu, C. Zhao, C. Xu, J. Ren e J. Zhong, “Auxetic meta-materials and their engineering applications: a review,” Engineering Research Express, vol. 5, p. 042003, 2023. DOI: https://doi.org/10.1088/2631-8695/ad0eb1
4. V. A. Lvov, F. S. Senatov, A. A. Veveris, V. A. Skrybykina e A. D. Lantada, “Auxetic Metamaterials for Biomedical Devices: Current Situation, Main Challenges, and Research Trends,” Materials, vol. 15, p. 1439, 2022. DOI: https://doi.org/10.3390/ma15041439
5. M. Sun, X. Hu, L. Tian, X. Yang e L. Min, “Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review,” Orthopaedic Surgery, vol. 16, pp. 1801-1815, 2024. DOI: https://doi.org/10.1111/os.14142
6. D. V. Truong, H. Nguyễn, R. Fangueiro, F. Ferreira e Q. Nguyễn, “Auxetic materials and structures in the automotive industry: Applications and insights,” Journal of Reinforced Plastics and Composites, p. 07316844251334174, 2025. DOI: https://doi.org/10.1177/07316844251334174
7. A. S. Patir, O. B. Ceylan, B. Sari, H. Kenan e I. Sen, “Re-entrant Chiral Auxetic: An Optimal Lightweight Design and Enhanced Performance for Aerospace Structural Parts,” Digitalization in Additive Manufacturing, pp. 715--729, 2025. DOI: https://doi.org/10.1007/978-3-031-84873-5_55
8. M. Wallbanks, M. F. Khan, M. Bodaghi, A. Triantaphyllou e A. Serjouei, “On the design workflow of auxetic metamaterials for structural applications,” Smart Materials and Structures, vol. 31, p. 023002, 2022. DOI: https://doi.org/10.1088/1361-665X/ac3f78
9. A. Joseph, V. Mahesh e D. Harursampath, “On the application of additive manufacturing methods for auxetic structures: a review,” Advances in Manufacturing, vol. 9, p. 342–368, 2021. DOI: https://doi.org/10.1007/s40436-021-00357-y
10. B. Schürger, J. Bocko, P. Frankovský, I. Delyová e J. Kostka, “Directional Auxetic Behavior of Mechanical Metamaterials: Material-Dependent and Geometry-Driven Mechanisms,” Materials, vol. 18, p. 5103, 2025. DOI: https://doi.org/10.3390/ma18225103
11. X.-T. Wang, B. Wang, X.-W. Li e L. Ma, “Mechanical properties of 3D re-entrant auxetic cellular structures,” International Journal of Mechanical Sciences, Vols. %1 de %2131-132, pp. 396-407, 2017. DOI: https://doi.org/10.1016/j.ijmecsci.2017.05.048
12. B. Koohbor, K. Z. Uddin, M. Heras, G. Youssef, D. Miller, S. Sockalingam, M. A. Sutton and T. Kiel, "Strain rate sensitivity of rotating-square auxetic metamaterials," International Journal of Impact Engineering, vol. 195, pp. 1-13, 2025. DOI: https://doi.org/10.1016/j.ijimpeng.2024.105128
13. M. Cristea, D. Ionita e M. M. Iftime, “Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful?,” Materials, vol. 13, p. 5302, 2020. DOI: https://doi.org/10.3390/ma13225302
14. T. R. Giri e R. W. Mailen, “Thermomechanical behavior of polymeric periodic structures,” Additive Manufacturing, vol. 49, p. 102512, 2022. DOI: https://doi.org/10.1016/j.addma.2021.102512
15. Y. Zhang, Z. Wang, F. Jiang, J. Baia e Z. Wang, “Effect of miscibility on spherulitic growth rate for double-layer polymer films,” Soft Matter, vol. 9, pp. 5771-5778, 2013. DOI: https://doi.org/10.1039/c3sm50542a
16. R. Hedayati, M. Alavi e M. Sadighi, “Effect of Degradation of Polylactic Acid (PLA) on Dynamic Mechanical Response of 3D Printed Lattice Structures,” Materials, vol. 17, p. 3674, 2024. DOI: https://doi.org/10.3390/ma17153674
17. A. Pellegrini, M. E. Palmieri, F. Lavecchia, L. Tricarico e L. M. Galantucci, “Auxetic behavior of 3D-printed structure made in acrylonitrile butadiene styrene and carbon fiber-reinforced polyamide,” Progress in Additive Manufacturing, vol. 9, p. 461–469, 2024. DOI: https://doi.org/10.1007/s40964-023-00465-0
18. I. Maskery, N. Aboulkhair, A. Aremu, C. Tuck e I. Ashcroft, “Compressive failure modes and energy absorption in additively manufactured double gyroid lattices,” Additive Manufacturing, vol. 16, pp. 24-29, 2017. DOI: https://doi.org/10.1016/j.addma.2017.04.003
19. B. Nečemer, J. Kramberger, T. Vuherer e S. Glodež, “Fatigue crack initiation and propagation in re-entrant auxetic cellular structures,” International Journal of Fatigue, vol. 126, pp. 241-247, 2019. DOI: https://doi.org/10.1016/j.ijfatigue.2019.05.010
20. D. Faraci, L. Driemeier e C. Comi, “Bending-Dominated Auxetic Materials for Wearable Protective Devices Against Impact,” Journal of Dynamic Behavior of Materials, vol. 7, p. 425–435, 2021. DOI: https://doi.org/10.1007/s40870-020-00284-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jesús Gabino Puente Córdova, Flor Yanhira Rentería Baltiérrez, Mario Alberto Bello Gómez, Nasser Mohamed Noriega

This work is licensed under a Creative Commons Attribution 4.0 International License.