Síntesis de un recubrimiento hidrofóbico fluorinado mediante la adición de isocianato y grupos amina a enlaces de uretano

Autores/as

  • Pedro Edmundo Martín-Várguez Universidad Autónoma de Nuevo León
  • Virgilio Ángel González-González Universidad Autónoma de Nuevo León
  • Marco Antonio Garza-Navarro Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-1795-6071
  • Alejandro Torres-Castro Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-3034-2568

DOI:

https://doi.org/10.29105/ingenierias24.90-11

Palabras clave:

Síntesis, fluronados, spin-coating, uretano

Resumen

Se sintetizaron seis precursores fluorinados a partir del polímero comercial Fluorolink E10-H, 3-isocianatopropil etoxisilano y 3-aminopropil metoxisilano. Estos fueron depositados mediante spin-coating sobre sustratos de vidrio, seguido de un recocido a 150 ºC para finalmente obtener los recubrimientos hidrofóbicos. La estructura química fue determinada mediante espectroscopía de infrarojo. La hidrofobicidad fue medida a partir de la medición del ángulo de contacto, cuyos valores se encontraron entre 70 y 93º. La hidrofobicidad aumentó con el número de grupos silano hasta un cierto límite antes de perderla. El precursor P111 obtuvo las mejores propiedades (estabilidad térmica debajo de 283.5 ºC y ángulo de contacto de 93º) de este trabajo.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Pedro Edmundo Martín-Várguez, Universidad Autónoma de Nuevo León

Licenciado en Química Industrial por la Universidad Autónoma de Yucatán, Maestro en Ciencias en Materiales por la FIME-UANL. Doctorante del Programa de Ingeniería de Materiales en la FIME.

Virgilio Ángel González-González, Universidad Autónoma de Nuevo León

Químico Industrial con Maestría en Química Orgánica por la Facultad de Ciencias Químicas de la UANL y Doctorado en Ingeniería de Materiales otorgado por la FIME-UANL. Ha sido investigador científico en el campo de los polímeros desde 1975. Es miembro del SNI nivel II. Es profesor de tiempo completo de la FIME desde 1998.

Marco Antonio Garza-Navarro, Universidad Autónoma de Nuevo León

Ingeniero Mecánico Electricista (2004), M.C. en Ingeniería Mecánica con Especialidad en Materiales (2006) y Doctorado en Ingeniería de Materiales (2009) por la FIME-UANL. Premio de Investigación UANL-2009, Nivel I en el SNI. Actualmente es Profesor Investigador de la FIME-UANL.

Alejandro Torres-Castro, Universidad Autónoma de Nuevo León

Ingeniero Mecánico, Maestro en Ciencias y Doctorado en Ingeniería de Materiales por la FIME-UANL. Posdoctorado en University of Texas at Austin, USA. Actualmente es profesor investigador en la FIME. Nivel II en el SNI.

Citas

B.J. Basu, V. Hariprakash, S.T. Aruna, R. V Lakshmi, J. Manasa, B.S. Shruthi, Effect of microstructure and surface roughness on the wettability of superhydrophobic sol–gel nanocomposite coatings, J. Sol-Gel Sci. Technol. 56 (2010) 278–286. DOI: https://doi.org/10.1007/s10971-010-2304-8

M. Ma, R.M. Hill, Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci. 11 (2006) 193–202. DOI: https://doi.org/10.1016/j.cocis.2006.06.002

V.G. Parale, D.B. Mahadik, M.S. Kavale, S.A. Mahadik, A.V. Rao, S. Mullens, Sol–gel preparation of PTMS modified hydrophobic and transparent silica coatings, J. Porous Mater. 20 (2013) 733–739. DOI: https://doi.org/10.1007/s10934-012-9648-0

N. Valipour M., F.C. Birjandi, J. Salgolzaei, Super-non-wettable surfaces: A review, Colloids Surfaces A Physicochem. Eng. Asp. 448 (2014) 93–106. DOI: https://doi.org/10.1016/j.colsurfa.2014.02.016

M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering, Curr. Opin. Colloid Interface Sci. 14 (2009) 270–280. DOI: https://doi.org/10.1016/j.cocis.2009.05.004

J.. Cras, C.. Rowe-Taitt, D.. Nivens, F.. Ligler, Comparison of chemical cleaning methods of glass in preparation for silanization, Biosens. Bioelectron. 14 (1999) 683–688. DOI: https://doi.org/10.1016/S0956-5663(99)00043-3

P. Innocenzi, M.O. Abdirashid, M. Guglielmi, Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane, J. Sol-Gel Sci. Technol. 3 (1994) 47–55. DOI: https://doi.org/10.1007/BF00490148

G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces., Adv. Colloid Interface Sci. 133 (2007) 61–89. DOI: https://doi.org/10.1016/j.cis.2007.04.009

V.V. Ganbavle, U.K.H. Bangi, S.S. Latthe, S.A. Mahadik, A.V. Rao, Self-cleaning silica coatings on glass by single step sol–gel route, Surf. Coatings Technol. 205 (2011) 5338–5344. DOI: https://doi.org/10.1016/j.surfcoat.2011.05.055

J.W. Krumpfer, T.J. McCarthy, Rediscovering silicones: “unreactive” silicones react with inorganic surfaces., Langmuir. 27 (2011) 11514–9. DOI: https://doi.org/10.1021/la202583w

C.. van Oss, R.. Good, M.. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces, J. Colloid Interface Sci. 111 (1986) 378–390. DOI: https://doi.org/10.1016/0021-9797(86)90041-X

C.J. van Oss, Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions., J. Mol. Recognit. 16 (2003) 177–90. doi:10.1002/jmr.618. DOI: https://doi.org/10.1002/jmr.618

D.G. Castner, D.W. Grainger, Fluorinated Surfaces, Coatings, and Films, Primera, American Chemical Society, Washington, DC, 2001. DOI: https://doi.org/10.1021/bk-2001-0787

M.G. Dhara, S. Benerjee, Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups, Prog. Polym. Sci. 35 (2010) 1022–1077. DOI: https://doi.org/10.1016/j.progpolymsci.2010.04.003

V.C. Malshe, N.S. Sangaj, Fluorinated acrylic copolymers: Part I: Study of clear coatings, Prog. Org. Coatings. 53 (2005) 207–211. DOI: https://doi.org/10.1016/j.porgcoat.2005.03.003

N. Kiraz, E. Burunkaya, Ö. Kesmez, M. Asiltürk, H. Erdem Çamurlu, E. Arpaç, Sol–gel synthesis of 3-(triethoxysilyl)propylsuccinicanhydride containing fluorinated silane for hydrophobic surface applications, J. Sol-Gel Sci. Technol. 56 (2010) 157–166. DOI: https://doi.org/10.1007/s10971-010-2289-3

E. Burunkaya, N. Kiraz, Ö. Kesmez, M. Asilturk, H. Erdem Çamurlu, E. Arpaç, Sol–gel synthesis of IPTES and D10H consisting fluorinated silane system for hydrophobic applications, J. Sol-Gel Sci. Technol. 56 (2010) 99–106. DOI: https://doi.org/10.1007/s10971-010-2281-y

J. Kozakiewicz, J. Przybylski, K. Sylwestrzak, I. Ofat, New family of functionalized crosslinkers for heat-curable polyurethane systems—A preliminary study, Prog. Org. Coatings. 72 (2011) 120–130. DOI: https://doi.org/10.1016/j.porgcoat.2011.01.009

Q.-W. Lu, T.R. Hoye, C.W. Macosko, Reactivity of Common Functional Groups with Urethanes: Models for Reactive Compatibilization of Thermoplastic Polyurethane Blends, J. Polym. Sci. Part A Polym. Chem. 40 (2002) 2310–2328. DOI: https://doi.org/10.1002/pola.10310

K. Schwetlick, R. Noack, Kinetics and catalysis of consecutive isocyanates reactions. Formation of carbamates, allophanates and isocyanurates, J. Chem. Soc. Perkin Trans. 2. (1995) 395–402. DOI: https://doi.org/10.1039/p29950000395

R. Blossey, Self-cleaning surfaces--virtual realities., Nat. Mater. 2 (2003) 301–6. DOI: https://doi.org/10.1038/nmat856

E. Delebecq, J.-P. Pascault, B. Boutevin, F. Ganachaud, On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane, Chem. Rev. 113 (2013) 80–118. DOI: https://doi.org/10.1021/cr300195n

F. Ferrero, M. Periolatto, Application of fluorinated compounds to cotton fabrics via sol–gel, Appl. Surf. Sci. 275 (2013) 201–207. DOI: https://doi.org/10.1016/j.apsusc.2013.01.001

A.G. Kannan, N.R. Choudhury, N. Dutta, Fluoro-silsesquioxane-urethane hybrid for thin film applications., ACS Appl. Mater. Interfaces. 1 (2009) 336–47. DOI: https://doi.org/10.1021/am800056p

N. Stobie, B. Duffy, J. Colreavy, P. McHale, S.J. Hinder, D.E. McCormack, Dual-action hygienic coatings: Benefits of hydrophobicity and silver ion release for protection of environmental and clinical surfaces, J. Colloid Interface Sci. 345 (2010) 286–292. DOI: https://doi.org/10.1016/j.jcis.2010.02.009

M.M. Coleman, D.J. Skrovanek, J. Hu, P.C. Painter, Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends, Macromolecules. 21 (1988) 59–65. DOI: https://doi.org/10.1021/ma00179a014

P. Dimitrakopoulos, Gravitational effects on the deformation of a droplet adhering to a horizontal solid surface in shear flow, Phys. Fluids. 19 (2007) 122105. DOI: https://doi.org/10.1063/1.2821127

H. Hu, R.G. Larson, Evaporation of a Sessile Droplet on a Substrate, J. Phys. Chem. B. 106 (2002) 1334–1344. DOI: https://doi.org/10.1021/jp0118322

E.L. Decker, B. Frank, Y. Suo, S. Garoff, Physics of contact angle measurement, Colloids Surfaces A Physicochem. Eng. Asp. 156 (1999) 177–189. DOI: https://doi.org/10.1016/S0927-7757(99)00069-2

D.. Kwok, A.. Neumann, Contact angle interpretation in terms of solid surface tension, Colloids Surfaces A Physicochem. Eng. Asp. 161 (2000) 31–48. DOI: https://doi.org/10.1016/S0927-7757(99)00323-4

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir. 16 (2000) 5754–5760. DOI: https://doi.org/10.1021/la991660o

R. Tadmor, Line energy and the relation between advancing, receding, and young contact angles., Langmuir. 20 (2004) 7659–64. DOI: https://doi.org/10.1021/la049410h

S.-Y. Moon, J.-S. Bae, E. Jeon, J.-W. Park, Organic Sol-Gel Synthesis: Solution-Processable Microporous Organic Networks, Angew. Chemie. 122 (2010) 9694–9698. DOI: https://doi.org/10.1002/ange.201002609

A. Cunha, C.S.R. Freire, A.J.D. Silvestre, C.P. Neto, A. Gandini, E. Orblin, et al., Highly Hydrophobic Biopolymers Prepared by the Surface Pentafluorobenzoylation of Cellulose Substrates, Biomacromolecules. 8 (2007) 1347–1352. DOI: https://doi.org/10.1021/bm0700136

H.-D. Hwang, H.-J. Kim, UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion, J. Colloid Interface Sci. 362 (2011) 274–284. DOI: https://doi.org/10.1016/j.jcis.2011.06.044

M.A. Semsarzadeh, A.H. Navarchian, Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate), J. Appl. Polym. Sci. 90 (2003) 963–972. DOI: https://doi.org/10.1002/app.12691

P.I. Kordomenos, J.E. Kresta, Thermal stability of isocyanate-based polymers. 1. Kinetics of the thermal dissociation of urethane, oxazolidone, and isocyanurate groups, Macromolecules. 14 (1981) 1434–1437. DOI: https://doi.org/10.1021/ma50006a056

X. Qiang, X. Ma, Z. Li, X. Hou, Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application, Colloid Polym. Sci. 292 (2014) 1531–1544. DOI: https://doi.org/10.1007/s00396-013-3157-9

Descargas

Publicado

2021-01-30

Cómo citar

Martín-Várguez, P. E., González-González, V. Ángel, Garza-Navarro, M. A., & Torres-Castro, A. (2021). Síntesis de un recubrimiento hidrofóbico fluorinado mediante la adición de isocianato y grupos amina a enlaces de uretano. Ingenierias, 24(90), 13–26. https://doi.org/10.29105/ingenierias24.90-11

Datos de los fondos