Synthesis of hydrophobic fluorinated coating by further addition of isocyanate and amine groups to urethane bond

Authors

  • Pedro Edmundo Martín-Várguez Universidad Autónoma de Nuevo León
  • Virgilio Ángel González-González Universidad Autónoma de Nuevo León
  • Marco Antonio Garza-Navarro Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-1795-6071
  • Alejandro Torres-Castro Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-3034-2568

DOI:

https://doi.org/10.29105/ingenierias24.90-11

Keywords:

Synthesis, fluorinated, spin-coating, urethane

Abstract

Six fluorinated precursors were synthesized from commercial polymer Fluorolink E10-H, 3-isocyanatepropyl ethoxysilane and 3-aminepropyl methoxysilane. The precursors were spin-coated on glass substrates and annealed at 150 °C for 2 h to obtain hydrophobic coatings. Chemical structure of was determined by infrared spectroscopy. Hydrophobicity was measured from drop contact angle, ranging between 70 and 93º. Hydrophobicity increased with the number of silane groups until a certain limit before losing it. Precursor P111 has the better properties (thermal stability 283.5 °C, contact angle 93°) within our work.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Pedro Edmundo Martín-Várguez, Universidad Autónoma de Nuevo León

BS in Industrial Chemestry, Universidad Autónoma de Yucatán, Science Master in Materials Sciences, FIME-UANL. Doctoral student in Materials Engineering FIME.

Virgilio Ángel González-González, Universidad Autónoma de Nuevo León

Degree in Organic Chemistry from the Faculty of Chemical Sciences of the UANL and a Doctorate in Materials Engineering awarded by the FIME-UANL. He has been a scientific researcher in the field of polymers since 1975. He is a member of SNI level II. He has been a full-time professor at FIME since 1998.

Marco Antonio Garza-Navarro, Universidad Autónoma de Nuevo León

Mechanical Electrical Engineer (2004), M.C. in Mechanical Engineering with a Specialty in Materials (2006) and a Doctorate in Materials Engineering (2009) from the FIME-UANL. Research Award UANL-2009, Level I at the SNI. He is currently a Research Professor at FIME-UANL.

Alejandro Torres-Castro, Universidad Autónoma de Nuevo León

Mechanical Engineer, Master of Science and Doctorate in Materials Engineering from FIME-UANL. Post-doctorate at the University of Texas at Austin, USA. He is currently a research professor at FIME. Level II in the SNI.

References

B.J. Basu, V. Hariprakash, S.T. Aruna, R. V Lakshmi, J. Manasa, B.S. Shruthi, Effect of microstructure and surface roughness on the wettability of superhydrophobic sol–gel nanocomposite coatings, J. Sol-Gel Sci. Technol. 56 (2010) 278–286. DOI: https://doi.org/10.1007/s10971-010-2304-8

M. Ma, R.M. Hill, Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci. 11 (2006) 193–202. DOI: https://doi.org/10.1016/j.cocis.2006.06.002

V.G. Parale, D.B. Mahadik, M.S. Kavale, S.A. Mahadik, A.V. Rao, S. Mullens, Sol–gel preparation of PTMS modified hydrophobic and transparent silica coatings, J. Porous Mater. 20 (2013) 733–739. DOI: https://doi.org/10.1007/s10934-012-9648-0

N. Valipour M., F.C. Birjandi, J. Salgolzaei, Super-non-wettable surfaces: A review, Colloids Surfaces A Physicochem. Eng. Asp. 448 (2014) 93–106. DOI: https://doi.org/10.1016/j.colsurfa.2014.02.016

M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering, Curr. Opin. Colloid Interface Sci. 14 (2009) 270–280. DOI: https://doi.org/10.1016/j.cocis.2009.05.004

J.. Cras, C.. Rowe-Taitt, D.. Nivens, F.. Ligler, Comparison of chemical cleaning methods of glass in preparation for silanization, Biosens. Bioelectron. 14 (1999) 683–688. DOI: https://doi.org/10.1016/S0956-5663(99)00043-3

P. Innocenzi, M.O. Abdirashid, M. Guglielmi, Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane, J. Sol-Gel Sci. Technol. 3 (1994) 47–55. DOI: https://doi.org/10.1007/BF00490148

G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces., Adv. Colloid Interface Sci. 133 (2007) 61–89. DOI: https://doi.org/10.1016/j.cis.2007.04.009

V.V. Ganbavle, U.K.H. Bangi, S.S. Latthe, S.A. Mahadik, A.V. Rao, Self-cleaning silica coatings on glass by single step sol–gel route, Surf. Coatings Technol. 205 (2011) 5338–5344. DOI: https://doi.org/10.1016/j.surfcoat.2011.05.055

J.W. Krumpfer, T.J. McCarthy, Rediscovering silicones: “unreactive” silicones react with inorganic surfaces., Langmuir. 27 (2011) 11514–9. DOI: https://doi.org/10.1021/la202583w

C.. van Oss, R.. Good, M.. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces, J. Colloid Interface Sci. 111 (1986) 378–390. DOI: https://doi.org/10.1016/0021-9797(86)90041-X

C.J. van Oss, Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions., J. Mol. Recognit. 16 (2003) 177–90. doi:10.1002/jmr.618. DOI: https://doi.org/10.1002/jmr.618

D.G. Castner, D.W. Grainger, Fluorinated Surfaces, Coatings, and Films, Primera, American Chemical Society, Washington, DC, 2001. DOI: https://doi.org/10.1021/bk-2001-0787

M.G. Dhara, S. Benerjee, Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups, Prog. Polym. Sci. 35 (2010) 1022–1077. DOI: https://doi.org/10.1016/j.progpolymsci.2010.04.003

V.C. Malshe, N.S. Sangaj, Fluorinated acrylic copolymers: Part I: Study of clear coatings, Prog. Org. Coatings. 53 (2005) 207–211. DOI: https://doi.org/10.1016/j.porgcoat.2005.03.003

N. Kiraz, E. Burunkaya, Ö. Kesmez, M. Asiltürk, H. Erdem Çamurlu, E. Arpaç, Sol–gel synthesis of 3-(triethoxysilyl)propylsuccinicanhydride containing fluorinated silane for hydrophobic surface applications, J. Sol-Gel Sci. Technol. 56 (2010) 157–166. DOI: https://doi.org/10.1007/s10971-010-2289-3

E. Burunkaya, N. Kiraz, Ö. Kesmez, M. Asilturk, H. Erdem Çamurlu, E. Arpaç, Sol–gel synthesis of IPTES and D10H consisting fluorinated silane system for hydrophobic applications, J. Sol-Gel Sci. Technol. 56 (2010) 99–106. DOI: https://doi.org/10.1007/s10971-010-2281-y

J. Kozakiewicz, J. Przybylski, K. Sylwestrzak, I. Ofat, New family of functionalized crosslinkers for heat-curable polyurethane systems—A preliminary study, Prog. Org. Coatings. 72 (2011) 120–130. DOI: https://doi.org/10.1016/j.porgcoat.2011.01.009

Q.-W. Lu, T.R. Hoye, C.W. Macosko, Reactivity of Common Functional Groups with Urethanes: Models for Reactive Compatibilization of Thermoplastic Polyurethane Blends, J. Polym. Sci. Part A Polym. Chem. 40 (2002) 2310–2328. DOI: https://doi.org/10.1002/pola.10310

K. Schwetlick, R. Noack, Kinetics and catalysis of consecutive isocyanates reactions. Formation of carbamates, allophanates and isocyanurates, J. Chem. Soc. Perkin Trans. 2. (1995) 395–402. DOI: https://doi.org/10.1039/p29950000395

R. Blossey, Self-cleaning surfaces--virtual realities., Nat. Mater. 2 (2003) 301–6. DOI: https://doi.org/10.1038/nmat856

E. Delebecq, J.-P. Pascault, B. Boutevin, F. Ganachaud, On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane, Chem. Rev. 113 (2013) 80–118. DOI: https://doi.org/10.1021/cr300195n

F. Ferrero, M. Periolatto, Application of fluorinated compounds to cotton fabrics via sol–gel, Appl. Surf. Sci. 275 (2013) 201–207. DOI: https://doi.org/10.1016/j.apsusc.2013.01.001

A.G. Kannan, N.R. Choudhury, N. Dutta, Fluoro-silsesquioxane-urethane hybrid for thin film applications., ACS Appl. Mater. Interfaces. 1 (2009) 336–47. DOI: https://doi.org/10.1021/am800056p

N. Stobie, B. Duffy, J. Colreavy, P. McHale, S.J. Hinder, D.E. McCormack, Dual-action hygienic coatings: Benefits of hydrophobicity and silver ion release for protection of environmental and clinical surfaces, J. Colloid Interface Sci. 345 (2010) 286–292. DOI: https://doi.org/10.1016/j.jcis.2010.02.009

M.M. Coleman, D.J. Skrovanek, J. Hu, P.C. Painter, Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends, Macromolecules. 21 (1988) 59–65. DOI: https://doi.org/10.1021/ma00179a014

P. Dimitrakopoulos, Gravitational effects on the deformation of a droplet adhering to a horizontal solid surface in shear flow, Phys. Fluids. 19 (2007) 122105. DOI: https://doi.org/10.1063/1.2821127

H. Hu, R.G. Larson, Evaporation of a Sessile Droplet on a Substrate, J. Phys. Chem. B. 106 (2002) 1334–1344. DOI: https://doi.org/10.1021/jp0118322

E.L. Decker, B. Frank, Y. Suo, S. Garoff, Physics of contact angle measurement, Colloids Surfaces A Physicochem. Eng. Asp. 156 (1999) 177–189. DOI: https://doi.org/10.1016/S0927-7757(99)00069-2

D.. Kwok, A.. Neumann, Contact angle interpretation in terms of solid surface tension, Colloids Surfaces A Physicochem. Eng. Asp. 161 (2000) 31–48. DOI: https://doi.org/10.1016/S0927-7757(99)00323-4

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir. 16 (2000) 5754–5760. DOI: https://doi.org/10.1021/la991660o

R. Tadmor, Line energy and the relation between advancing, receding, and young contact angles., Langmuir. 20 (2004) 7659–64. DOI: https://doi.org/10.1021/la049410h

S.-Y. Moon, J.-S. Bae, E. Jeon, J.-W. Park, Organic Sol-Gel Synthesis: Solution-Processable Microporous Organic Networks, Angew. Chemie. 122 (2010) 9694–9698. DOI: https://doi.org/10.1002/ange.201002609

A. Cunha, C.S.R. Freire, A.J.D. Silvestre, C.P. Neto, A. Gandini, E. Orblin, et al., Highly Hydrophobic Biopolymers Prepared by the Surface Pentafluorobenzoylation of Cellulose Substrates, Biomacromolecules. 8 (2007) 1347–1352. DOI: https://doi.org/10.1021/bm0700136

H.-D. Hwang, H.-J. Kim, UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion, J. Colloid Interface Sci. 362 (2011) 274–284. DOI: https://doi.org/10.1016/j.jcis.2011.06.044

M.A. Semsarzadeh, A.H. Navarchian, Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate), J. Appl. Polym. Sci. 90 (2003) 963–972. DOI: https://doi.org/10.1002/app.12691

P.I. Kordomenos, J.E. Kresta, Thermal stability of isocyanate-based polymers. 1. Kinetics of the thermal dissociation of urethane, oxazolidone, and isocyanurate groups, Macromolecules. 14 (1981) 1434–1437. DOI: https://doi.org/10.1021/ma50006a056

X. Qiang, X. Ma, Z. Li, X. Hou, Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application, Colloid Polym. Sci. 292 (2014) 1531–1544. DOI: https://doi.org/10.1007/s00396-013-3157-9

Downloads

Published

2021-01-30

How to Cite

Martín-Várguez, P. E., González-González, V. Ángel, Garza-Navarro, M. A., & Torres-Castro, A. (2021). Synthesis of hydrophobic fluorinated coating by further addition of isocyanate and amine groups to urethane bond. Revista Ingenierías, 24(90), 13–26. https://doi.org/10.29105/ingenierias24.90-11

Funding data