Efecto térmico de las azoteas verdes en la Ciudad de México, Yucatán y Coahuila
DOI:
https://doi.org/10.29105/ingenierias26.95-799Keywords:
Heat transfer, energy saving, air conditioning, mathematical model, conventional roofAbstract
In this work, a mathematical heat transfer model is presented to evaluate the thermal effect of the implementation of extensive green roofs for the rehabilitation of poorly insulated buildings subjected to the climatic conditions of Mexico City, Yucatan and Coahuila. The model, which requires a few amounts of input data, is solved numerically and implemented in Python. The results show that the implementation of a green roof contributes to decrease the amplitude of internal temperature oscillation of the building, decreases the average indoor temperature and reduces the consumption of electrical energy for air conditioning.
Downloads
References
L.F. Møller Francis, M. Bergen Jensen, Benefits of green roofs: A systematic review of the evidence for three ecosystem services, Urban For. Urban Green. 28 (2017) 167–176.
L. Blank, A. Vasl, B.Y. Schindler, G.J. Kadas, L. Blaustein, Horizontal and vertical island biogeography of arthropods on green roofs: a review, Urban Ecosyst. 20 (2017) 911–917. doi:10.1007/s11252-016-0639-9.
A. Mohajerani, J. Bakaric, T. Jeffrey-Bailey, The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete, J. Environ. Manage. 197 (2017) 522–538.
J.C. Berndtsson, L. Bengtsson, K. Jinnob, Runoff water quality from intensive and extensive vegetated roofs, Ecol. Eng. 35 (2009) 369–380.
D. Suszanowicz, Model research on the influence of green roofs on environmental parameters in urban agglomerations, E3S Web Conf. 45 (2018).
U. Berardi, The outdoor microclimate benefits and energy saving resulting fromgreen roofs retrofits, Energy Build. 121 (2016) 217–229.
M.V. Sánchez Dominguez, E. González, D. Fabián, A. Salvo, M.S. Fenoglio, Arthropod diversity and ecological processes on green roofs in a semi-rural area of Argentina: Similarity to neighbor ground habitats and landscape effects, Landsc. Urban Plan. 199 (2020) 103816. doi:https://doi.org/10.1016/j.landurbplan.2020.103816.
L. Yao, Z. Wu, Y. Wang, S. Sun, W. Wei, Y. Xu, Does the spatial location of green roofs affects runoff mitigation in small urbanized catchments?, J. Environ. Manage. 268 (2020) 110707. doi:10.1016/j.jenvman.2020.110707.
P. Bevilacqua, R. Bruno, N. Arcuri, Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data, Renew. Energy. 152 (2020) 1414–1430. doi:10.1016/j.renene.2020.01.085.
T. Susca, Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate, Build. Environ. 162 (2019) 106273. doi:10.1016/j.buildenv.2019.106273.
T. Liberalesso, C. Oliverira Cruz, C. Matos Silva, M. Manso, Green infrastructure and public policies: An international review of green roofs and green walls incentives, Land Use Policy. 96 (2020) 104693. doi:https://doi.org/10.1016/j.landusepol.2020.104693.
O. Saadatian, K. Sopian, E. Salleh, C.H. Lim, S. Riffat, E. Saadatian, A. Toudeshki, M.Y. Sulaiman, A review of energy aspects of green roofs, Renew. Sustain. Energy Rev. 23 (2013) 155–168.
I. Teotónio, C. Matos Silva, C. Oliveira Cruz, Eco–solutions for urban environments regeneration: The economic value of green roofs, J. Clean. Prod. 199 (2018) 121–135.
M. Tang, X. Zheng, Experimental study of the thermal performance of an extensive green roof on sunny summer days, Appl. Energy. 242 (2019) 1010–1021. doi:10.1016/J.APENERGY.2019.03.153.
G. Kokogiannakis, J. Darkwa, K. Yuan, A combined experimental and simulation method for appraising the energy performance of green roofs in Ningbo’s Chinese climate, Build. Simul. 7 (2014) 13–20. doi:10.1007/s12273-013-0149-0.
A. Pyrgou, J. Yang, M. Santamouris, Green roofs’ urban heat island mitigation potential in tropical climates for institutional buildings under free floating conditions, in: 14th Asia Pacific Conf. Built Environ., Bali, Indonesia, 2017.
F. Ardente, M. Beccali, M. Cellura, M. Mistretta, Energy and environmental benefits in public buildings as a result of retrofit actions, Renew. Sustain. Energy Rev. 15 (2011) 460–470. doi:10.1016/j.rser.2010.09.022.
S.W. Churchill, H. Ozoe, Correlations for laminar forced convection in flow over an isothermal flat plate and in developing and fully developed flow in an isothermal tube, J. Heat Transfer. 95 (1973) 78–84.
S. Quezada-García, G. Espinosa-Paredes, M.A. Escobedo-Izquierdo, A. Vázquez-Rodríguez, R. Vázquez-Rodríguez, J.J. Ambriz-García, Heterogeneous model for heat transfer in Green Roof Systems, Energy Build. 139 (2017) 205–213.
N. Gerzhova, J. Cote, P. Blanchet, C. Dagenais, S. Menard, A conceptual framework for modelling the thermal conductivity of dry green roof substrates, BioResources. 14 (2019) 8573–8599.
C. Feng, Q. Meng, Y. Zhang, Theoretical and experimental analysis of the energy balance of extensive green roofs, Energy Build. 42 (2010) 959–965.
S. Cascone, J. Coma, A. Gagliano, G. Pérez, The evapotranspiration process in green roofs: A review, Build. Environ. 147 (2019) 337–355.
G.H. Hargreaves, F. Asce, R.G. Allen, History and Evaluation of Hargreaves Evapotranspiration Equation, J. Irrig. Drain. Eng. 129 (2003) 53–63. doi:10.1061/ASCE0733-94372003129:153.
Q.L. Meng, Y. Zang, L. Zang, Measurement of the equivalent thermal resistance of rooftop lawns in a hot-climate wind tunnel, J. Harbin Inst. Technol. (New Ser. 13 (2006) 53–56.
L. Evangelisti, C. Guattari, F. Asdrubali, On the sky temperature models and their influence on buildings energy performance: A critical review, Energy Build. 183 (2019) 607–625. doi:10.1016/j.enbuild.2018.11.037.
Y. Cengel, M. Boles, Termodinámica, Mc Graw Hill, Mexico, 2003.
R. Martens, B. Bass, S. Saiz Alcazar, Roof–envelope ratio impact on green roof energy performance, Urban Ecosyst. 11 (2008) 399–408.
Conagua SMN, Estaciones Meteorológicas Automáticas (EMA’s), (n.d.). https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s (accessed 29 August 2019).
M. Mungur, Y. Poorun, D. Juggurnath, Y.B. Ruhomally, R. Rughooputh, M.Z. Dauhoo, A. Khoodaruth, H. Shamachurn, M. Gooroochurn, N. Boodia, M. Chooneea, S. Facknath, A numerical and experimental investigation of the effectiveness of green roofs in tropical environments: The case study of Mauritius in mid and late winter, Energy. 202 (2020) 117608.
M.A. Chagolla–Aranda, E. Simá, J. Xamán, G. Álvarez, I. Hernández–Pérez, E. Téllez–Velázquez, Effect of irrigation on the experimental thermal performance of agreen roof in a semi–warm climate in Mexico, Energy Build. 154 (2017) 232–243.
A. Ávila-Hernández, E. Simá, J. Xamán, I. Hernández-Pérez, E. Téllez-Velázquez, M.A. Chagolla-Aranda, Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico, Energy Build. 209 (2020) 109709. doi:10.1016/j.enbuild.2019.109709.
X. Chen, C. Shuai, Z. Chen, Y. Zhang, What are the root causes hindering the implementation of green roofs in urban China?, Sci. Total Environ. 654 (2019) 742–750.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Heriberto Sánchez Mora, Manuela Azucena Escobedo Izquierdo, Sergio Quezada García, Ricardo Isaac Cázares Ramírez, Marco Antonio Polo Labarrios
This work is licensed under a Creative Commons Attribution 4.0 International License.